These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32075051)

  • 1. Detection of Beef Adulterated with Pork Using a Low-Cost Electronic Nose Based on Colorimetric Sensors.
    Han F; Huang X; H Aheto J; Zhang D; Feng F
    Foods; 2020 Feb; 9(2):. PubMed ID: 32075051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial bionic taste sensors coupled with chemometrics for rapid detection of beef adulteration.
    Lu B; Han F; Aheto JH; Rashed MMA; Pan Z
    Food Sci Nutr; 2021 Sep; 9(9):5220-5228. PubMed ID: 34532030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusion of a low-cost electronic nose and Fourier transform near-infrared spectroscopy for qualitative and quantitative detection of beef adulterated with duck.
    Han F; Huang X; Aheto JH; Zhang X; Rashed MMA
    Anal Methods; 2022 Jan; 14(4):417-426. PubMed ID: 35014996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic nose dataset for pork adulteration in beef.
    Sarno R; Sabilla SI; Wijaya DR; Sunaryono D; Fatichah C
    Data Brief; 2020 Oct; 32():106139. PubMed ID: 32904304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods.
    Weng S; Guo B; Tang P; Yin X; Pan F; Zhao J; Huang L; Zhang D
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118005. PubMed ID: 31951866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose.
    Huang C; Gu Y
    Foods; 2022 Feb; 11(4):. PubMed ID: 35206078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques.
    Huang L; Zhao J; Chen Q; Zhang Y
    Food Chem; 2014 Feb; 145():228-36. PubMed ID: 24128472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Authentication of duck blood tofu binary and ternary adulterated with cow and pig blood-based gel using Fourier transform near-infrared coupled with fast chemometrics.
    Han F; Ming L; Aheto JH; Rashed MMA; Zhang X; Huang X
    Front Nutr; 2022; 9():935099. PubMed ID: 36386895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standardized Extraction Techniques for Meat Analysis with the Electronic Tongue: A Case Study of Poultry and Red Meat Adulteration.
    Zaukuu JZ; Gillay Z; Kovacs Z
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualitative and Quantitative Detection of Food Adulteration Using a Smart E-Nose.
    Pulluri KK; Kumar VN
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adulteration discrimination and analysis of fresh and frozen-thawed minced adulterated mutton using hyperspectral images combined with recurrence plot and convolutional neural network.
    Zhang Y; Zheng M; Zhu R; Ma R
    Meat Sci; 2022 Oct; 192():108900. PubMed ID: 35802993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef.
    Morsy N; Sun DW
    Meat Sci; 2013 Feb; 93(2):292-302. PubMed ID: 23040181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multivariate Analysis Coupled with M-SVM Classification for Lard Adulteration Detection in Meat Mixtures of Beef, Lamb, and Chicken Using FTIR Spectroscopy.
    Siddiqui MA; Khir MHM; Witjaksono G; Ghumman ASM; Junaid M; Magsi SA; Saboor A
    Foods; 2021 Oct; 10(10):. PubMed ID: 34681455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Pork Adulteration in Processed Meat Products Using the Developed Mitochondrial DNA-Based Primers.
    Ha J; Kim S; Lee J; Lee S; Lee H; Choi Y; Oh H; Yoon Y
    Korean J Food Sci Anim Resour; 2017; 37(3):464-468. PubMed ID: 28747833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and non-destructive detection of ponceau 4R red colored pork.
    Zaukuu JZ; Tsyawo EC
    Meat Sci; 2024 Mar; 209():109400. PubMed ID: 38043327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Identification and Visualization of Jowl Meat Adulteration in Pork Using Hyperspectral Imaging.
    Jiang H; Cheng F; Shi M
    Foods; 2020 Feb; 9(2):. PubMed ID: 32041126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sensitive multiplex PCR protocol for simultaneous detection of chicken, duck, and pork in beef samples.
    Qin P; Qu W; Xu J; Qiao D; Yao L; Xue F; Chen W
    J Food Sci Technol; 2019 Mar; 56(3):1266-1274. PubMed ID: 30956306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.
    Rohman A; Sismindari ; Erwanto Y; Che Man YB
    Meat Sci; 2011 May; 88(1):91-5. PubMed ID: 21227596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Authentication of animal fats using direct analysis in real time (DART) ionization-mass spectrometry and chemometric tools.
    Vaclavik L; Hrbek V; Cajka T; Rohlik BA; Pipek P; Hajslova J
    J Agric Food Chem; 2011 Jun; 59(11):5919-26. PubMed ID: 21526761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis.
    Kamruzzaman M; Sun DW; ElMasry G; Allen P
    Talanta; 2013 Jan; 103():130-6. PubMed ID: 23200368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.