These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 32075058)

  • 21. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription.
    Barboric M; Yik JH; Czudnochowski N; Yang Z; Chen R; Contreras X; Geyer M; Matija Peterlin B; Zhou Q
    Nucleic Acids Res; 2007; 35(6):2003-12. PubMed ID: 17341462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription.
    Bieniasz PD; Grdina TA; Bogerd HP; Cullen BR
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7791-6. PubMed ID: 10393900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Latent HIV-1 TAR Regulates 7SK-responsive P-TEFb Target Genes and Targets Cellular Immune Responses in the Absence of Tat.
    Eilebrecht S; Benecke BJ; Benecke AG
    Genomics Proteomics Bioinformatics; 2017 Oct; 15(5):313-323. PubMed ID: 29037489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of the HIV transcriptional activator complex in live cells by image-based protein-protein interaction analysis.
    Asamitsu K; Omagari K; Okuda T; Hibi Y; Okamoto T
    Genes Cells; 2016 Jul; 21(7):706-16. PubMed ID: 27193293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II.
    Barboric M; Nissen RM; Kanazawa S; Jabrane-Ferrat N; Peterlin BM
    Mol Cell; 2001 Aug; 8(2):327-37. PubMed ID: 11545735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The KAT5-Acetyl-Histone4-Brd4 axis silences HIV-1 transcription and promotes viral latency.
    Li Z; Mbonye U; Feng Z; Wang X; Gao X; Karn J; Zhou Q
    PLoS Pathog; 2018 Apr; 14(4):e1007012. PubMed ID: 29684085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms of HIV latency.
    Cary DC; Fujinaga K; Peterlin BM
    J Clin Invest; 2016 Feb; 126(2):448-54. PubMed ID: 26731470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies.
    Asamitsu K; Fujinaga K; Okamoto T
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29673219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Host-cell positive transcription elongation factor b kinase activity is essential and limiting for HIV type 1 replication.
    Flores O; Lee G; Kessler J; Miller M; Schlief W; Tomassini J; Hazuda D
    Proc Natl Acad Sci U S A; 1999 Jun; 96(13):7208-13. PubMed ID: 10377393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and functional characterization of P-TEFb-associated factors that control general and HIV-1 transcriptional elongation.
    Chen R; Liu M; Zhang K; Zhou Q
    Methods; 2011 Jan; 53(1):85-90. PubMed ID: 20385240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR.
    Sedore SC; Byers SA; Biglione S; Price JP; Maury WJ; Price DH
    Nucleic Acids Res; 2007; 35(13):4347-58. PubMed ID: 17576689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4.
    Yang Z; Yik JH; Chen R; He N; Jang MK; Ozato K; Zhou Q
    Mol Cell; 2005 Aug; 19(4):535-45. PubMed ID: 16109377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of noncoding RNAs in the regulation of P-TEFb availability and enzymatic activity.
    Napolitano G; Lania L; Majello B
    Biomed Res Int; 2014; 2014():643805. PubMed ID: 24701579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular mRNA activates transcription elongation by displacing 7SK RNA.
    Young TM; Tsai M; Tian B; Mathews MB; Pe'ery T
    PLoS One; 2007 Oct; 2(10):e1010. PubMed ID: 17925858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PJA2 ubiquitinates the HIV-1 Tat protein with atypical chain linkages to activate viral transcription.
    Faust TB; Li Y; Jang GM; Johnson JR; Yang S; Weiss A; Krogan NJ; Frankel AD
    Sci Rep; 2017 Mar; 7():45394. PubMed ID: 28345603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Misregulation of P-TEFb activity: pathological consequences].
    Muniz L; Kiss T; Egloff S
    Med Sci (Paris); 2012 Feb; 28(2):200-5. PubMed ID: 22377309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE.
    Paparidis NF; Durvale MC; Canduri F
    Mol Biosyst; 2017 Jan; 13(2):246-276. PubMed ID: 27833949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibitors of HIV-1 Tat-mediated transactivation.
    Richter SN; Palù G
    Curr Med Chem; 2006; 13(11):1305-15. PubMed ID: 16712471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies.
    Rice AP
    Curr Pharm Des; 2017; 23(28):4098-4102. PubMed ID: 28677507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Natural Product from Polygonum cuspidatum Sieb. Et Zucc. Promotes Tat-Dependent HIV Latency Reversal through Triggering P-TEFb's Release from 7SK snRNP.
    Wang C; Yang S; Lu H; You H; Ni M; Shan W; Lin T; Gao X; Chen H; Zhou Q; Xue Y
    PLoS One; 2015; 10(11):e0142739. PubMed ID: 26569506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.