BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32075209)

  • 1. System-Based Differential Gene Network Analysis for Characterizing a Sample-Specific Subnetwork.
    Tanaka Y; Tamada Y; Ikeguchi M; Yamashita F; Okuno Y
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32075209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative gene co-expression network analysis of epithelial to mesenchymal transition reveals lung cancer progression stages.
    Wang D; Haley JD; Thompson P
    BMC Cancer; 2017 Dec; 17(1):830. PubMed ID: 29212455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EMT network-based feature selection improves prognosis prediction in lung adenocarcinoma.
    Shao B; Bjaanæs MM; Helland Å; Schütte C; Conrad T
    PLoS One; 2019; 14(1):e0204186. PubMed ID: 30703089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global gene network exploration based on explainable artificial intelligence approach.
    Park H; Maruhashi K; Yamaguchi R; Imoto S; Miyano S
    PLoS One; 2020; 15(11):e0241508. PubMed ID: 33156825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smell Detection Agent Optimisation Framework and Systems Biology Approach to Detect Dys-Regulated Subnetwork in Cancer Data.
    Sivan SL; Sukumara Pillai VCS
    Biomolecules; 2021 Dec; 12(1):. PubMed ID: 35053185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel network profiling analysis reveals system changes in epithelial-mesenchymal transition.
    Shimamura T; Imoto S; Shimada Y; Hosono Y; Niida A; Nagasaki M; Yamaguchi R; Takahashi T; Miyano S
    PLoS One; 2011; 6(6):e20804. PubMed ID: 21687740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition.
    Mak MP; Tong P; Diao L; Cardnell RJ; Gibbons DL; William WN; Skoulidis F; Parra ER; Rodriguez-Canales J; Wistuba II; Heymach JV; Weinstein JN; Coombes KR; Wang J; Byers LA
    Clin Cancer Res; 2016 Feb; 22(3):609-20. PubMed ID: 26420858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics.
    Aijö T; Lähdesmäki H
    Bioinformatics; 2009 Nov; 25(22):2937-44. PubMed ID: 19706742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid Bayesian network learning method for constructing gene networks.
    Wang M; Chen Z; Cloutier S
    Comput Biol Chem; 2007 Oct; 31(5-6):361-72. PubMed ID: 17889617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order dynamic Bayesian Network learning with hidden common causes for causal gene regulatory network.
    Lo LY; Wong ML; Lee KH; Leung KS
    BMC Bioinformatics; 2015 Nov; 16():395. PubMed ID: 26608050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prognostic value of epithelial-mesenchymal transition markers in clear cell renal cell carcinoma.
    Xu H; Xu WH; Ren F; Wang J; Wang HK; Cao DL; Shi GH; Qu YY; Zhang HL; Ye DW
    Aging (Albany NY); 2020 Jan; 12(1):866-883. PubMed ID: 31915310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised Learning Framework With Multidimensional Scaling in Predicting Epithelial-Mesenchymal Transitions.
    Qiu Y; Jiang H; Ching WK
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2714-2723. PubMed ID: 32386162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian Network to Infer Drug-Induced Apoptosis Circuits from Connectivity Map Data.
    Yu J; Silva JM
    Methods Mol Biol; 2018; 1783():361-378. PubMed ID: 29767372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Large-Scale Multitask Learning Network for Gene Expression Inference.
    Dizaji KG; Chen W; Huang H
    J Comput Biol; 2021 May; 28(5):485-500. PubMed ID: 34014778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery.
    Koh HWL; Fermin D; Vogel C; Choi KP; Ewing RM; Choi H
    NPJ Syst Biol Appl; 2019; 5():22. PubMed ID: 31312515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying global expression patterns and key regulators in epithelial to mesenchymal transition through multi-study integration.
    Parsana P; Amend SR; Hernandez J; Pienta KJ; Battle A
    BMC Cancer; 2017 Jun; 17(1):447. PubMed ID: 28651527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epithelial-mesenchymal transition markers screened in a cell-based model and validated in lung adenocarcinoma.
    Song J; Wang W; Wang Y; Qin Y; Wang Y; Zhou J; Wang X; Zhang Y; Wang Q
    BMC Cancer; 2019 Jul; 19(1):680. PubMed ID: 31296175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.