These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32075278)

  • 1. Size-Dependent Thermo- and Photoresponsive Plasmonic Properties of Liquid Crystalline Gold Nanoparticles.
    Promiński A; Tomczyk E; Pawlak M; Jędrych A; Mieczkowski J; Lewandowski W; Wójcik M
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold Nanoparticles Thin Films with Thermo- and Photoresponsive Plasmonic Properties Realized with Liquid-Crystalline Ligands.
    Tomczyk E; Promiński A; Bagiński M; Górecka E; Wójcik M
    Small; 2019 Sep; 15(37):e1902807. PubMed ID: 31348618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying Thermal Switchability of Liquid Crystalline Nanoparticles by Alkyl Ligands Variation.
    Grzelak J; Żuk M; Tupikowska M; Lewandowski W
    Nanomaterials (Basel); 2018 Mar; 8(3):. PubMed ID: 29518916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Absorbing Nanocrystal Cores in Soft Photonic Crystals: A Spectroscopy and SANS Study.
    Rauh A; Carl N; Schweins R; Karg M
    Langmuir; 2018 Jan; 34(3):854-867. PubMed ID: 28767251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuneable Plasmonic Resonances Of A Dynamic Thin Film Of Ultrasmall Nanocrystals Modified In the Anti-Galvanic Reduction Process.
    Kołodziej G; Szostak S; Tomczyk E; Wójcik M
    Chemistry; 2023 Dec; 29(71):e202301843. PubMed ID: 37642228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shaping Liquid Crystals with Gold Nanoparticles: Helical Assemblies with Tunable and Hierarchical Structures Via Thin-Film Cooperative Interactions.
    Bagiński M; Tupikowska M; González-Rubio G; Wójcik M; Lewandowski W
    Adv Mater; 2020 Jan; 32(1):e1904581. PubMed ID: 31729083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Supercrystals.
    García-Lojo D; Núñez-Sánchez S; Gómez-Graña S; Grzelczak M; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM
    Acc Chem Res; 2019 Jul; 52(7):1855-1864. PubMed ID: 31243968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordered Arrangement and Optical Properties of Silica-Stabilized Gold Nanoparticle-PNIPAM Core-Satellite Clusters for Sensitive Raman Detection.
    Herrmann JF; Kretschmer F; Hoeppener S; Höppener C; Schubert US
    Small; 2017 Oct; 13(39):. PubMed ID: 28834089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-Crystalline Elastomers with Gold Nanoparticle Cross-Linkers.
    Wójcik MM; Wróbel J; Jańczuk ZZ; Mieczkowski J; Górecka E; Choi J; Cho M; Pociecha D
    Chemistry; 2017 Jul; 23(37):8912-8920. PubMed ID: 28444785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible switching of structural and plasmonic properties of liquid-crystalline gold nanoparticle assemblies.
    Lewandowski W; Łojewska T; Szustakiewicz P; Mieczkowski J; Pociecha D
    Nanoscale; 2016 Feb; 8(5):2656-63. PubMed ID: 26758794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties.
    Lewandowski W; Wójcik M; Górecka E
    Chemphyschem; 2014 May; 15(7):1283-95. PubMed ID: 24789440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-Responsive Supramolecular Nanotubes-Based Chiral Plasmonic Assemblies.
    Jedrych A; Pawlak M; Gorecka E; Lewandowski W; Wojcik MM
    ACS Nano; 2023 Mar; 17(6):5548-5560. PubMed ID: 36897199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles.
    Chen Y; Wang Z; He Y; Yoon YJ; Jung J; Zhang G; Lin Z
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1391-E1400. PubMed ID: 29386380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity.
    Tomizaki KY; Yamaguchi Y; Tsukamoto N; Imai T
    Protein Pept Lett; 2018; 25(1):56-63. PubMed ID: 29237364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Plasmonics with Responsive, Binary Assemblies of Gold Nanorods and Nanospheres.
    Szustakiewicz P; Kowalska N; Bagiński M; Lewandowski W
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-Standing Optically Switchable Chiral Plasmonic Photonic Crystal Based on Self-Assembled Cellulose Nanorods and Gold Nanoparticles.
    Chu G; Wang X; Yin H; Shi Y; Jiang H; Chen T; Gao J; Qu D; Xu Y; Ding D
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21797-806. PubMed ID: 26378345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Spirals of Nanoparticles in Light-Responsive Polygonal Fields.
    Orlova T; Plamont R; Depauw A; Katsonis N
    Small; 2019 Sep; 15(39):e1902419. PubMed ID: 31389175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches.
    Lin H; Song L; Huang Y; Cheng Q; Yang Y; Guo Z; Su F; Chen T
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11296-11304. PubMed ID: 32043861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconfigurable Polymer Shells on Shape-Anisotropic Gold Nanoparticle Cores.
    Kim J; Song X; Kim A; Luo B; Smith JW; Ou Z; Wu Z; Chen Q
    Macromol Rapid Commun; 2018 Jul; 39(14):e1800101. PubMed ID: 29722094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance as a tool for investigation of non-covalent nanoparticle interactions in heterogeneous self-assembly & disassembly systems.
    Shevchenko KG; Cherkasov VR; Tregubov AA; Nikitin PI; Nikitin MP
    Biosens Bioelectron; 2017 Feb; 88():3-8. PubMed ID: 27665167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.