These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32075278)

  • 41. pH and Temperature Dual-Responsive Plasmonic Switches of Gold Nanoparticle Monolayer Film for Multiple Anticounterfeiting.
    Liu B; Lu X; Qiao Z; Song L; Cheng Q; Zhang J; Zhang A; Huang Y; Chen T
    Langmuir; 2018 Oct; 34(43):13047-13056. PubMed ID: 30300548
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nucleation Points: The Forgotten Parameter in the Synthesis of Hydrogel-Coated Gold Nanoparticles.
    Sepúlveda A; Picard-Lafond A; Marette A; Boudreau D
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33530296
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-Organization of Gold Nanoparticle Assemblies with 3D Spatial Order and Their External Stimuli Responsiveness.
    Köhn Serrano MS; König TA; Haataja JS; Löbling TI; Schmalz H; Agarwal S; Fery A; Greiner A
    Macromol Rapid Commun; 2016 Feb; 37(3):215-20. PubMed ID: 26637124
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural characterization and self-assembly into superlattices of iron oxide-gold core-shell nanoparticles synthesized via a high-temperature organometallic route.
    Chiang IC; Chen DH
    Nanotechnology; 2009 Jan; 20(1):015602. PubMed ID: 19417256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amphiphilic-Polymer-Guided Plasmonic Assemblies and Their Biomedical Applications.
    Song J; Niu G; Chen X
    Bioconjug Chem; 2017 Jan; 28(1):105-114. PubMed ID: 28095685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversible Shrinkage of DNA-Functionalized Gold Nanoparticle Assemblies Revealed by Surface Plasmon Resonance.
    Wang G; Yu L; Akiyama Y; Takarada T; Maeda M
    Biotechnol J; 2018 Dec; 13(12):e1800090. PubMed ID: 30052321
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Light-Switchable Self-Assembly of Non-Photoresponsive Gold Nanoparticles.
    Cheng Y; Dong J; Li X
    Langmuir; 2018 May; 34(21):6117-6124. PubMed ID: 29716191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-throughput directed self-assembly of core-shell ferrimagnetic nanoparticle arrays.
    Dai Q; Frommer J; Berman D; Virwani K; Davis B; Cheng JY; Nelson A
    Langmuir; 2013 Jun; 29(24):7472-7. PubMed ID: 23368716
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasmonic photonic crystals realized through DNA-programmable assembly.
    Park DJ; Zhang C; Ku JC; Zhou Y; Schatz GC; Mirkin CA
    Proc Natl Acad Sci U S A; 2015 Jan; 112(4):977-81. PubMed ID: 25548175
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA-Guided Plasmonic Helix with Switchable Chirality.
    Lan X; Liu T; Wang Z; Govorov AO; Yan H; Liu Y
    J Am Chem Soc; 2018 Sep; 140(37):11763-11770. PubMed ID: 30129752
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunable Surface Plasmon Resonance-Based Remote Actuation of Bimetallic Core-Shell Nanoparticle-Coated Stimuli Responsive Polymer for Switchable Chemo-Photothermal Synergistic Cancer Therapy.
    Amoli-Diva M; Sadighi-Bonabi R; Pourghazi K; Hadilou N
    J Pharm Sci; 2018 Oct; 107(10):2618-2627. PubMed ID: 29909028
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermo-Responsive Jamming of Nanoparticle Dense Suspensions towards Macroscopic Liquid-Solid Switchable Materials.
    Liu M; Wan X; Yang M; Wang Z; Bao H; Dai B; Liu H; Wang S
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202114602. PubMed ID: 34807500
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmonic nanocomposites: polymer-guided strategies for assembling metal nanoparticles.
    Gao B; Rozin MJ; Tao AR
    Nanoscale; 2013 Jul; 5(13):5677-91. PubMed ID: 23703218
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stimuli-Responsive Polymeric Nanoparticles.
    Liu X; Yang Y; Urban MW
    Macromol Rapid Commun; 2017 Jul; 38(13):. PubMed ID: 28497535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fountain Pen-Inspired 3D Colloidal Assembly, Consisting of Metallic Nanoparticles on a Femtoliter Scale.
    Kim SJ; Lee IH; Kim WG; Hwang YH; Oh JW
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686911
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stimulus-Responsive Nanoparticles and Associated (Reversible) Polymorphism via Polymerization Induced Self-assembly (PISA).
    Pei Y; Lowe AB; Roth PJ
    Macromol Rapid Commun; 2017 Jan; 38(1):. PubMed ID: 27900822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications.
    Törngren B; Akitsu K; Ylinen A; Sandén S; Jiang H; Ruokolainen J; Komatsu M; Hamamura T; Nakazaki J; Kubo T; Segawa H; Österbacka R; Smått JH
    J Colloid Interface Sci; 2014 Aug; 427():54-61. PubMed ID: 24388614
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Control of gold nanoparticle superlattice properties via mesogenic ligand architecture.
    Lewandowski W; Jatczak K; Pociecha D; Mieczkowski J
    Langmuir; 2013 Mar; 29(10):3404-10. PubMed ID: 23421504
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Free-Standing 2D Janus Gold Nanoparticles Monolayer Film with Tunable Bifacial Morphologies via the Asymmetric Growth at Air-Liquid Interface.
    Cheng Q; Song L; Lin H; Yang Y; Huang Y; Su F; Chen T
    Langmuir; 2020 Jan; 36(1):250-256. PubMed ID: 31697894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.