These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32075370)

  • 1. Kinetic Monte Carlo Modeling for the NO-CO Reaction Mechanism on Rh(100) and Rh(111).
    Liu J; Tan L; Huang L; Wang Q; Liu Y
    Langmuir; 2020 Mar; 36(12):3127-3140. PubMed ID: 32075370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Assessment of a Criterion for the Application of Brønsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces.
    Ding ZB; Maestri M
    Ind Eng Chem Res; 2019 Jun; 58(23):9864-9874. PubMed ID: 31303692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented Pairwise Additive Interaction Model for Lateral Adsorbate Interactions: The NO-CO Reaction System on Rh(100) and Rh(111).
    Tan L; Huang L; Liu Y; Wang Q
    Langmuir; 2018 May; 34(18):5174-5183. PubMed ID: 29619835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations.
    Ferrin P; Simonetti D; Kandoi S; Kunkes E; Dumesic JA; Nørskov JK; Mavrikakis M
    J Am Chem Soc; 2009 Apr; 131(16):5809-15. PubMed ID: 19334787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and screening of bimetallic catalysts for nitric oxide reduction by CO: a study of kinetic Monte Carlo simulation based on first-principles calculations.
    Wang C; Li R; Guo W
    Phys Chem Chem Phys; 2024 Sep; 26(36):23754-23765. PubMed ID: 39229742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT studies of hydrocarbon combustion on metal surfaces.
    Arya M; Mirzaei AA; Davarpanah AM; Barakati SM; Atashi H; Mohsenzadeh A; Bolton K
    J Mol Model; 2018 Feb; 24(2):47. PubMed ID: 29396776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Investigation of the Mechanism and Selectivity of CO
    Sun S; Higham MD; Zhang X; Catlow CRA
    ACS Catal; 2024 Apr; 14(8):5503-5519. PubMed ID: 38660604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast species redistribution approach to accelerate the kinetic Monte Carlo simulation for heterogeneous catalysis.
    Cao XM; Shao ZJ; Hu P
    Phys Chem Chem Phys; 2020 Apr; 22(14):7348-7364. PubMed ID: 32211648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies.
    Hoffmann MJ; Bligaard T
    J Chem Theory Comput; 2018 Mar; 14(3):1583-1593. PubMed ID: 29357239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles-based kinetic Monte Carlo simulations of CO oxidation on catalytic Au(110) and Ag(110) surfaces.
    Fajín JLC; Moura AS; Cordeiro MNDS
    Phys Chem Chem Phys; 2021 Jul; 23(25):14037-14050. PubMed ID: 34151916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the Exchange-Correlation Potential on the Transferability of Brønsted-Evans-Polanyi Relationships in Heterogeneous Catalysis.
    Fajín JL; Viñes F; D S Cordeiro MN; Illas F; Gomes JR
    J Chem Theory Comput; 2016 May; 12(5):2121-6. PubMed ID: 27111183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Monte Carlo simulation of the NO + CO reaction on Rh(111).
    Avalos LA; Bustos V; Uñac R; Zaera F; Zgrablich G
    J Phys Chem B; 2006 Dec; 110(49):24964-71. PubMed ID: 17149918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An understanding and implications of the coverage of surface free sites in heterogeneous catalysis.
    Wang H; Guo Y; Lu G; Hu P
    J Chem Phys; 2009 Jun; 130(22):224701. PubMed ID: 19530778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth.
    Wang X; Yuan Q; Li J; Ding F
    Nanoscale; 2017 Aug; 9(32):11584-11589. PubMed ID: 28770913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational study of the influence of the ceria surface termination on the mechanism of CO oxidation of isolated Rh atoms.
    Song W; Jansen AP; Hensen EJ
    Faraday Discuss; 2013; 162():281-92. PubMed ID: 24015589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions.
    Nielsen J; d'Avezac M; Hetherington J; Stamatakis M
    J Chem Phys; 2013 Dec; 139(22):224706. PubMed ID: 24329081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "First-principles" kinetic Monte Carlo simulations revisited: CO oxidation over RuO2 (110).
    Hess F; Farkas A; Seitsonen AP; Over H
    J Comput Chem; 2012 Mar; 33(7):757-66. PubMed ID: 22253041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic parameters from temperature programmed desorption spectra combined with energy relations: top and bridge CO on Rh(100).
    Jansen MM; Hermse CG; Jansen Tonek AP
    Phys Chem Chem Phys; 2010 Jul; 12(28):8053-61. PubMed ID: 20520857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the nature of dense CO adlayers on fcc(100) surfaces: a kinetic Monte Carlo study.
    Hermse CG; Jansen MM; van Bavel AP; Lukkien JJ; van Santen RA; Jansen AP
    Phys Chem Chem Phys; 2010 Jan; 12(2):461-73. PubMed ID: 20023824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing Potential Energy Surface Exploration Strategies for Complex Systems.
    N'Tsouaglo GK; Béland LK; Joly JF; Brommer P; Mousseau N; Pochet P
    J Chem Theory Comput; 2015 Apr; 11(4):1970-7. PubMed ID: 26574398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.