These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32075547)

  • 1. Fate of natural organic matter and oxidation/disinfection by-products formation at a full-scale drinking water treatment plant.
    Popov M; Kragulj Isakovski M; Molnar Jazić J; Tubić A; Watson M; Šćiban M; Agbaba J
    Environ Technol; 2021 Sep; 42(22):3475-3486. PubMed ID: 32075547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants.
    Zhong X; Cui C; Yu S
    Chemosphere; 2017 Jul; 179():290-297. PubMed ID: 28371712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The determination and fate of disinfection by-products from ozonation-chlorination of fulvic acid.
    Zhong X; Cui C; Yu S
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6472-6480. PubMed ID: 28074362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates.
    Bond T; Templeton MR; Rifai O; Ali H; Graham NJ
    Chemosphere; 2014 Sep; 111():218-24. PubMed ID: 24997921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of pre-oxidation of natural organic matter for the mitigation of disinfection byproducts: Electron donating capacity and UV absorbance as surrogate parameters.
    Rougé V; von Gunten U; Allard S
    Water Res; 2020 Dec; 187():116418. PubMed ID: 33011567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and fate of ozonation disinfection by-products in two Canadian drinking water systems.
    Laflamme O; Sérodes JB; Simard S; Legay C; Dorea C; Rodriguez MJ
    Chemosphere; 2020 Dec; 260():127660. PubMed ID: 32758783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.
    Mao Y; Guo D; Yao W; Wang X; Yang H; Xie YF; Komarneni S; Yu G; Wang Y
    Water Res; 2018 Mar; 130():322-332. PubMed ID: 29247948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trade-off control of organic matter and disinfection by-products in the drinking water treatment chain: Role of pre-ozonation.
    Liu H; Zhang X; Fang Y; Fu C; Chen Z
    Sci Total Environ; 2021 May; 770():144767. PubMed ID: 33736400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation mechanism and fate of dissolved organic nitrogen (DON) in a full-scale drinking water treatment.
    Luo Y; Liu C; Li C; Shan Y; Mehmood T
    J Environ Sci (China); 2022 Nov; 121():122-135. PubMed ID: 35654503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determination and fate of disinfection by-products from ozonation of polluted raw water.
    Huang WJ; Fang GC; Wang CC
    Sci Total Environ; 2005 Jun; 345(1-3):261-72. PubMed ID: 15919544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,6-Dichloro-1,4-benzoquinone formation from chlorination of substituted aromatic antioxidants and its control by pre-ozonation in drinking water treatment plant.
    Qiao R; Liang S; Chen C; Xiong L; Guan Q; Wang L; Fu Z; Pan Y; Liu H; Zhu J; Hu Y; Li L; Huang G
    Chemosphere; 2022 Jul; 299():134498. PubMed ID: 35390416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of ozonation and biologically enhanced activated carbon filtration on the composition of micropollutants in drinking water.
    Li WG; Qin W; Song Y; Zheng ZJ; Lv LY
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33927-33935. PubMed ID: 30003486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New phenolic halogenated disinfection byproducts in simulated chlorinated drinking water: Identification, decomposition, and control by ozone-activated carbon treatment.
    Huang Y; Li H; Zhou Q; Li A; Shuang C; Xian Q; Xu B; Pan Y
    Water Res; 2018 Dec; 146():298-306. PubMed ID: 30292954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation and control of ozonation by-products during drinking water advanced treatment in a pilot-scale study.
    Wang Y; Wang S; Li J; Yan X; Li C; Zhang M; Yu J; Ren L
    Sci Total Environ; 2022 Feb; 808():151921. PubMed ID: 34838561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence and fate of ozonation by-products at a full-scale drinking water treatment plant.
    Papageorgiou A; Voutsa D; Papadakis N
    Sci Total Environ; 2014 May; 481():392-400. PubMed ID: 24607632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of ozonation and activated carbon filtration in the natural organic matter removal from drinking water.
    Matilainen A; Iivari P; Sallanko J; Heiska E; Tuhkanen T
    Environ Technol; 2006 Oct; 27(10):1171-80. PubMed ID: 17144266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of disinfection by-products formation during ozonation of bromide-containing groundwater.
    Huang WJ; Tsai YY; Chu C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(12):2919-31. PubMed ID: 14672325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the formation of aldehydes and carboxylic acids in ozonated and electrochemically treated surface water.
    Liu S; Kim J; Korshin GV
    Chemosphere; 2022 Nov; 307(Pt 2):135664. PubMed ID: 35850228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation.
    Li C; Wang D; Xu X; Wang Z
    Sci Total Environ; 2017 Jun; 587-588():177-184. PubMed ID: 28238434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.
    Zhang Y; Chu W; Yao D; Yin D
    J Environ Sci (China); 2017 Aug; 58():322-330. PubMed ID: 28774623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.