These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 32075669)

  • 1. The exoskeleton expansion: improving walking and running economy.
    Sawicki GS; Beck ON; Kang I; Young AJ
    J Neuroeng Rehabil; 2020 Feb; 17(1):25. PubMed ID: 32075669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons.
    Nuckols RW; Takahashi KZ; Farris DJ; Mizrachi S; Riemer R; Sawicki GS
    PLoS One; 2020; 15(8):e0231996. PubMed ID: 32857774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Running With an Elastic Lower Limb Exoskeleton.
    Cherry MS; Kota S; Young A; Ferris DP
    J Appl Biomech; 2016 Jun; 32(3):269-77. PubMed ID: 26694976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton.
    Zhou T; Zhou Z; Zhang H; Chen W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biarticular passive exosuit to support balance control can reduce metabolic cost of walking.
    Barazesh H; Ahmad Sharbafi M
    Bioinspir Biomim; 2020 Mar; 15(3):036009. PubMed ID: 31995519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking.
    Etenzi E; Borzuola R; Grabowski AM
    J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating human joint moments unifies exoskeleton control, reducing user effort.
    Molinaro DD; Kang I; Young AJ
    Sci Robot; 2024 Mar; 9(88):eadi8852. PubMed ID: 38507475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.
    Galle S; Malcolm P; Collins SH; De Clercq D
    J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton.
    Zhou T; Xiong C; Zhang J; Hu D; Chen W; Huang X
    J Neuroeng Rehabil; 2021 Jun; 18(1):95. PubMed ID: 34092259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking.
    Panizzolo FA; Galiana I; Asbeck AT; Siviy C; Schmidt K; Holt KG; Walsh CJ
    J Neuroeng Rehabil; 2016 May; 13(1):43. PubMed ID: 27169361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible lower limb exoskeleton systems: A review.
    Meng Q; Zeng Q; Xie Q; Fei C; Kong B; Lu X; Wang H; Yu H
    NeuroRehabilitation; 2022; 50(4):367-390. PubMed ID: 35147568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton.
    Mooney LM; Herr HM
    J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Kinematic Model of a Humanoid Lower Limb Exoskeleton with Hydraulic Actuators.
    Glowinski S; Krzyzynski T; Bryndal A; Maciejewski I
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated evaluation approach of wearable lower limb exoskeletons for human performance augmentation.
    Zhang X; Chen X; Huo B; Liu C; Zhu X; Zu Y; Wang X; Chen X; Sun Q
    Sci Rep; 2023 Mar; 13(1):4251. PubMed ID: 36918651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.
    Young AJ; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):171-182. PubMed ID: 26829794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton.
    Nasiri R; Ahmadi A; Ahmadabadi MN
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2026-2032. PubMed ID: 30281466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.