These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32076592)

  • 21. Single-atom Catalytic Materials for Lean-electrolyte Ultrastable Lithium-Sulfur Batteries.
    Lu C; Chen Y; Yang Y; Chen X
    Nano Lett; 2020 Jul; 20(7):5522-5530. PubMed ID: 32579363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isomeric Organodithiol Additives for Improving Interfacial Chemistry in Rechargeable Li-S Batteries.
    Lian J; Guo W; Fu Y
    J Am Chem Soc; 2021 Jul; 143(29):11063-11071. PubMed ID: 34264661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.
    Wu M; Cui Y; Bhargav A; Losovyj Y; Siegel A; Agarwal M; Ma Y; Fu Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):10027-31. PubMed ID: 27411083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferrocene-Promoted Long-Cycle Lithium-Sulfur Batteries.
    Mi Y; Liu W; Yang KR; Jiang J; Fan Q; Weng Z; Zhong Y; Wu Z; Brudvig GW; Batista VS; Zhou H; Wang H
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14818-14822. PubMed ID: 27779359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Organic-Inorganic Hybrid Cathode Based on S-Se Dynamic Covalent Bonds.
    Zhao J; Si Y; Han Z; Li J; Guo W; Fu Y
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2654-2658. PubMed ID: 31755198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts.
    Yuan Z; Peng HJ; Hou TZ; Huang JQ; Chen CM; Wang DW; Cheng XB; Wei F; Zhang Q
    Nano Lett; 2016 Jan; 16(1):519-27. PubMed ID: 26713782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible and free-standing bacterial cellulose derived cathode host and separator for lithium-sulfur batteries.
    Bharti VK; Pathak AD; Sharma CS; Khandelwal M
    Carbohydr Polym; 2022 Oct; 293():119731. PubMed ID: 35798427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilized Lithium-Sulfur Batteries by Covalently Binding Sulfur onto the Thiol-Terminated Polymeric Matrices.
    Liu X; Xu N; Qian T; Liu J; Shen X; Yan C
    Small; 2017 Nov; 13(44):. PubMed ID: 28961372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Endogenous Prompting Mechanism for Sulfur Conversions Via Coupling with Polysulfides in Li-S Batteries.
    Zheng Q; Hou Q; Shu Z; Liu G; Fan X; Wang K; Fan J; Yuan R; Zheng M; Dong Q
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202308726. PubMed ID: 37469106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A labyrinth-like network electrode design for lithium-sulfur batteries.
    Tang W; Zhang Y; Zhong W; Aslam MK; Guo B; Bao SJ; Xu M
    Nanoscale; 2019 Aug; 11(31):14648-14653. PubMed ID: 31347627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulfurized Polyacrylonitrile for High-Performance Lithium-Sulfur Batteries: In-Depth Computational Approach Revealing Multiple Sulfur's Reduction Pathways and Hidden Li
    Perez Beltran S; Balbuena PB
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):491-502. PubMed ID: 33377389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pomegranate-Structured Silica/Sulfur Composite Cathodes for High-Performance Lithium-Sulfur Batteries.
    Choi S; Su D; Shin M; Park S; Wang G
    Chem Asian J; 2018 Mar; 13(5):568-576. PubMed ID: 29333699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tin disulfide embedded on porous carbon spheres for accelerating polysulfide conversion kinetics toward lithium-sulfur batteries.
    Jing W; Zu J; Zou K; Dai X; Song Y; Sun J; Chen Y; Tan Q; Liu Y
    J Colloid Interface Sci; 2023 Apr; 635():32-42. PubMed ID: 36577353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrostatic Polysulfides Confinement to Inhibit Redox Shuttle Process in the Lithium Sulfur Batteries.
    Ling M; Yan W; Kawase A; Zhao H; Fu Y; Battaglia VS; Liu G
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31741-31745. PubMed ID: 28809469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bis(aryl) Tetrasulfides as Cathode Materials for Rechargeable Lithium Batteries.
    Guo W; Wawrzyniakowski ZD; Cerda MM; Bhargav A; Pluth MD; Ma Y; Fu Y
    Chemistry; 2017 Dec; 23(67):16941-16947. PubMed ID: 28861926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial Lithium Isopropyl-Sulfide Macromolecules as an Ion-Selective Interface for Long-Life Lithium-Sulfur Batteries.
    Liu J; Cao Y; Zhou J; Wang M; Chen H; Yang T; Sun Y; Qian T; Yan C
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54537-54544. PubMed ID: 33216532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vanadium dioxide plates reduced graphene oxide as sulfur cathodes for efficient polysulfides trap in long-life lithium-sulfur batteries.
    Chen B; Wei J; Li X; Ji Y; Liang D; Chen T
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1003-1011. PubMed ID: 36152613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polysulfide Rejection Strategy in Lithium-Sulfur Batteries Using an Ion-Conducting Gel-Polymer Interlayer Membrane.
    Tiwari RK; Mishra R; Patel A; Tiwari A; Meghnani D; Singh RK
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):33957-33971. PubMed ID: 37429815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogen-Doped Porous Carbon Networks with Active Fe-N
    Yang H; Yang Y; Zhang X; Li Y; Qaisrani NA; Zhang F; Hao C
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31860-31868. PubMed ID: 31407898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.