These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 32076770)
1. Conflicting Frames about Ownership and Land Use Drive Wildfire Ignitions in a Protected Conservation Area. Seijo F; Godoy MM; Guglielmin D; Ciampoli C; Ebright S; Picco O; Defossé G Environ Manage; 2020 Apr; 65(4):448-462. PubMed ID: 32076770 [TBL] [Abstract][Full Text] [Related]
2. Assessing the socio-economic and land-cover drivers of wildfire activity and its spatiotemporal distribution in south-central Chile. Pozo RA; Galleguillos M; González ME; Vásquez F; Arriagada R Sci Total Environ; 2022 Mar; 810():152002. PubMed ID: 34856282 [TBL] [Abstract][Full Text] [Related]
3. Human activity, daylight saving time and wildfire occurrence. Kountouris Y Sci Total Environ; 2020 Jul; 727():138044. PubMed ID: 32315901 [TBL] [Abstract][Full Text] [Related]
4. Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia. Mundo IA; Wiegand T; Kanagaraj R; Kitzberger T J Environ Manage; 2013 Jul; 123():77-87. PubMed ID: 23583868 [TBL] [Abstract][Full Text] [Related]
5. Effects of a large wildfire on vegetation structure in a variable fire mosaic. Foster CN; Barton PS; Robinson NM; MacGregor CI; Lindenmayer DB Ecol Appl; 2017 Dec; 27(8):2369-2381. PubMed ID: 28851094 [TBL] [Abstract][Full Text] [Related]
6. Towards a comprehensive wildfire management strategy for Mediterranean areas: Framework development and implementation in Catalonia, Spain. Alcasena FJ; Ager AA; Bailey JD; Pineda N; Vega-García C J Environ Manage; 2019 Feb; 231():303-320. PubMed ID: 30359896 [TBL] [Abstract][Full Text] [Related]
7. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Harvey BJ; Donato DC; Turner MG Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087 [TBL] [Abstract][Full Text] [Related]
8. Examining management scenarios to mitigate wildfire hazard to caribou conservation projects using burn probability modeling. Stockdale C; Barber Q; Saxena A; Parisien MA J Environ Manage; 2019 Mar; 233():238-248. PubMed ID: 30580119 [TBL] [Abstract][Full Text] [Related]
9. Developing and testing models of the drivers of anthropogenic and lightning-caused wildfire ignitions in south-eastern Australia. Clarke H; Gibson R; Cirulis B; Bradstock RA; Penman TD J Environ Manage; 2019 Apr; 235():34-41. PubMed ID: 30669091 [TBL] [Abstract][Full Text] [Related]
10. Determining fuel moisture thresholds to assess wildfire hazard: A contribution to an operational early warning system. Argañaraz JP; Landi MA; Scavuzzo CM; Bellis LM PLoS One; 2018; 13(10):e0204889. PubMed ID: 30286128 [TBL] [Abstract][Full Text] [Related]
11. Water utility engagement in wildfire mitigation in watersheds in the western United States. Jones KW; Padowski J; Morgan M; Srinivasan J J Environ Manage; 2023 Dec; 347():119157. PubMed ID: 37778076 [TBL] [Abstract][Full Text] [Related]
12. The timing of fireworks-caused wildfire ignitions during the 4th of July holiday season. Vachula RS; Nelson JR; Hall AG PLoS One; 2023; 18(9):e0291026. PubMed ID: 37656710 [TBL] [Abstract][Full Text] [Related]
13. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Zald HSJ; Dunn CJ Ecol Appl; 2018 Jun; 28(4):1068-1080. PubMed ID: 29698575 [TBL] [Abstract][Full Text] [Related]
14. Wildfires as a major challenge for natural regeneration in Atlantic Forest. Dos Santos JFC; Gleriani JM; Velloso SGS; de Souza GSA; do Amaral CH; Torres FTP; Medeiros NDG; Dos Reis M Sci Total Environ; 2019 Feb; 650(Pt 1):809-821. PubMed ID: 30308856 [TBL] [Abstract][Full Text] [Related]
15. High-resolution mapping of wildfire drivers in California based on machine learning. Qiu L; Chen J; Fan L; Sun L; Zheng C Sci Total Environ; 2022 Aug; 833():155155. PubMed ID: 35413339 [TBL] [Abstract][Full Text] [Related]
16. Rapid growth of the US wildland-urban interface raises wildfire risk. Radeloff VC; Helmers DP; Kramer HA; Mockrin MH; Alexandre PM; Bar-Massada A; Butsic V; Hawbaker TJ; Martinuzzi S; Syphard AD; Stewart SI Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3314-3319. PubMed ID: 29531054 [TBL] [Abstract][Full Text] [Related]
17. Effects of ownership patterns on cross-boundary wildfires. Barros AMG; Day MA; Spies TA; Ager AA Sci Rep; 2021 Sep; 11(1):19319. PubMed ID: 34588539 [TBL] [Abstract][Full Text] [Related]
18. Recent wildfires in Central Chile: Detecting links between burned areas and population exposure in the wildland urban interface. Sarricolea P; Serrano-Notivoli R; Fuentealba M; Hernández-Mora M; de la Barrera F; Smith P; Meseguer-Ruiz Ó Sci Total Environ; 2020 Mar; 706():135894. PubMed ID: 31841846 [TBL] [Abstract][Full Text] [Related]
19. Classifying drivers of global forest loss. Curtis PG; Slay CM; Harris NL; Tyukavina A; Hansen MC Science; 2018 Sep; 361(6407):1108-1111. PubMed ID: 30213911 [TBL] [Abstract][Full Text] [Related]
20. Rethinking the maps: A case study of knowledge incorporation in Canadian wildfire risk management and planning. Sherry J; Neale T; McGee TK; Sharpe M J Environ Manage; 2019 Mar; 234():494-502. PubMed ID: 30641360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]