These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32076780)

  • 1. Efficient xylose utilization leads to highest lipid productivity in Candida tropicalis SY005 among six yeast strains grown in mixed sugar medium.
    Chattopadhyay A; Maiti MK
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3133-3144. PubMed ID: 32076780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of two sugar transporters responsible for efficient xylose uptake in an oleaginous yeast Candida tropicalis SY005.
    Chattopadhyay A; Singh R; Das AK; Maiti MK
    Arch Biochem Biophys; 2020 Nov; 695():108645. PubMed ID: 33122161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production.
    Dey P; Maiti MK
    J Appl Microbiol; 2013 May; 114(5):1357-68. PubMed ID: 23311514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production.
    Misra S; Raghuwanshi S; Gupta P; Dutt K; Saxena RK
    Antonie Van Leeuwenhoek; 2012 Feb; 101(2):393-402. PubMed ID: 21956659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering an oleaginous yeast Candida tropicalis SY005 for enhanced lipid production.
    Chattopadhyay A; Gupta A; Maiti MK
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8399-8411. PubMed ID: 32820371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition.
    Queiroz SS; Oliva B; Silva TF; Segato F; Felipe MGA
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4587-4606. PubMed ID: 35708749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylitol production from a mutant strain of Candida tropicalis.
    Jeon YJ; Shin HS; Rogers PL
    Lett Appl Microbiol; 2011 Jul; 53(1):106-13. PubMed ID: 21554342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis.
    Ko BS; Kim J; Kim JH
    Appl Environ Microbiol; 2006 Jun; 72(6):4207-13. PubMed ID: 16751533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis.
    Ko BS; Kim DM; Yoon BH; Bai S; Lee HY; Kim JH; Kim IC
    Biotechnol Lett; 2011 Jun; 33(6):1209-13. PubMed ID: 21331586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate.
    Jeon WY; Shim WY; Lee SH; Choi JH; Kim JH
    Bioprocess Biosyst Eng; 2013 Jun; 36(6):809-17. PubMed ID: 23411871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain.
    Morais Junior WG; Pacheco TF; Trichez D; Almeida JRM; Gonçalves SB
    Yeast; 2019 May; 36(5):349-361. PubMed ID: 30997699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of xylose utilizing and high lipid producing yeast strains as a potential candidate for industrial application.
    Qvirist L; Mierke F; Vazquez Juarez R; Andlid T
    BMC Microbiol; 2022 Jul; 22(1):173. PubMed ID: 35799117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and functional characterization of a lipid droplet protein CtLDP1 from an oleaginous yeast Candida tropicalis SY005.
    Chattopadhyay A; Singh R; Mitra M; Das AK; Maiti MK
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Aug; 1865(8):158725. PubMed ID: 32320743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
    Kim JH; Han KC; Koh YH; Ryu YW; Seo JH
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover.
    Sitepu IR; Jin M; Fernandez JE; da Costa Sousa L; Balan V; Boundy-Mills KL
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7645-57. PubMed ID: 25052467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.
    Tamburini E; Costa S; Marchetti MG; Pedrini P
    Biomolecules; 2015 Aug; 5(3):1979-89. PubMed ID: 26295411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.
    Wang H; Li L; Zhang L; An J; Cheng H; Deng Z
    Microb Cell Fact; 2016 May; 15():82. PubMed ID: 27184671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor.
    Zhang L; Chen Z; Wang J; Shen W; Li Q; Chen X
    Microb Cell Fact; 2021 May; 20(1):105. PubMed ID: 34034730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis.
    Jeon WY; Yoon BH; Ko BS; Shim WY; Kim JH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):191-8. PubMed ID: 21922311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.