These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3207697)

  • 21. Deamidation of labile asparagine residues in the autoregulatory sequence of human phenylalanine hydroxylase.
    Solstad T; Carvalho RN; Andersen OA; Waidelich D; Flatmark T
    Eur J Biochem; 2003 Mar; 270(5):929-38. PubMed ID: 12603326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide.
    Oliyai C; Borchardt RT
    Pharm Res; 1993 Jan; 10(1):95-102. PubMed ID: 8430066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins.
    Dehart MP; Anderson BD
    J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain.
    Kirikoshi R; Manabe N; Takahashi O
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28212316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides.
    Robinson NE; Robinson ZW; Robinson BR; Robinson AL; Robinson JA; Robinson ML; Robinson AB
    J Pept Res; 2004 May; 63(5):426-36. PubMed ID: 15140160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solid state chemical instability of an asparaginyl residue in a model hexapeptide.
    Oliyai C; Patel JP; Carr L; Borchardt RT
    J Pharm Sci Technol; 1994; 48(3):167-23. PubMed ID: 8069519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity.
    Radkiewicz JL; Zipse H; Clarke S; Houk KN
    J Am Chem Soc; 2001 Apr; 123(15):3499-506. PubMed ID: 11472122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of stereoisomers and isoforms of a tryptic heptapeptide fragment of human growth hormone and analysis by reverse-phase HPLC and capillary electrophoresis.
    Vinther A; Holm A; Høeg-Jensen T; Jespersen AM; Klausen NK; Christensen T; Sørensen HH
    Eur J Biochem; 1996 Jan; 235(1-2):304-9. PubMed ID: 8631346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of acidic N + 1 residues on asparagine deamidation rates in solution and in the solid state.
    Li B; Gorman EM; Moore KD; Williams T; Schowen RL; Topp EM; Borchardt RT
    J Pharm Sci; 2005 Mar; 94(3):666-75. PubMed ID: 15668945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of alpha-helix on the stability of Asn residues: deamidation rates in peptides of varying helicity.
    Kosky AA; Razzaq UO; Treuheit MJ; Brems DN
    Protein Sci; 1999 Nov; 8(11):2519-23. PubMed ID: 10595558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping.
    Zhang YT; Hu J; Pace AL; Wong R; Wang YJ; Kao YH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 965():65-71. PubMed ID: 24999246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific catalysis of asparaginyl deamidation by carboxylic acids: kinetic, thermodynamic, and quantitative structure-property relationship analyses.
    Connolly BD; Tran B; Moore JM; Sharma VK; Kosky A
    Mol Pharm; 2014 Apr; 11(4):1345-58. PubMed ID: 24620787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of deamidation on stability for the collagen to gelatin transition.
    Silva T; Kirkpatrick A; Brodsky B; Ramshaw JA
    J Agric Food Chem; 2005 Oct; 53(20):7802-6. PubMed ID: 16190633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deamidation of peptides in aerobic nitric oxide solution by a nitrosative pathway.
    Kong L; Saavedra JE; Buzard GS; Xu X; Hood BL; Conrads TP; Veenstra TD; Keefer LK
    Nitric Oxide; 2006 Mar; 14(2):144-51. PubMed ID: 16249103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of the EF corner favors deamidation of asparaginyl residues in hemoglobin: the example of Hb La Roche-sur-Yon [beta 81 (EF5) Leu----His].
    Wajcman H; Kister J; Vasseur C; Blouquit Y; Trastour JC; Cottenceau D; Galacteros F
    Biochim Biophys Acta; 1992 Feb; 1138(2):127-32. PubMed ID: 1540659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depsipeptide analogues of elastin repeating sequences: conformational analysis.
    Arad O; Goodman M
    Biopolymers; 1990; 29(12-13):1652-68. PubMed ID: 2386811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclization of the N-terminal X-Asn-Gly motif during sample preparation for bottom-up proteomics.
    Zhang X; Højrup P
    Anal Chem; 2010 Oct; 82(20):8680-5. PubMed ID: 20866026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relative rates of glutamine and asparagine deamidation in glucagon fragment 22-29 under acidic conditions.
    Joshi AB; Kirsch LE
    J Pharm Sci; 2002 Nov; 91(11):2331-45. PubMed ID: 12379918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of sucrose and mannitol on asparagine deamidation rates of model peptides in solution and in the solid state.
    Li B; O'Meara MH; Lubach JW; Schowen RL; Topp EM; Munson EJ; Borchardt RT
    J Pharm Sci; 2005 Aug; 94(8):1723-35. PubMed ID: 15986465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.