These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 3207702)
21. Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: implications for a novel mechanism of action. Zhao H; Sood R; Jutila A; Bose S; Fimland G; Nissen-Meyer J; Kinnunen PK Biochim Biophys Acta; 2006 Sep; 1758(9):1461-74. PubMed ID: 16806056 [TBL] [Abstract][Full Text] [Related]
22. Formation of supported bilayers on silica substrates. Anderson TH; Min Y; Weirich KL; Zeng H; Fygenson D; Israelachvili JN Langmuir; 2009 Jun; 25(12):6997-7005. PubMed ID: 19354208 [TBL] [Abstract][Full Text] [Related]
23. Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Barry JA; Gawrisch K Biochemistry; 1994 Jul; 33(26):8082-8. PubMed ID: 8025114 [TBL] [Abstract][Full Text] [Related]
24. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface. Mansour HM; Zografi G Langmuir; 2007 Mar; 23(7):3809-19. PubMed ID: 17323986 [TBL] [Abstract][Full Text] [Related]
25. Water Structuring Induces Nonuniversal Hydration Repulsion between Polar Surfaces: Quantitative Comparison between Molecular Simulations, Theory, and Experiments. Schlaich A; Daldrop JO; Kowalik B; Kanduč M; Schneck E; Netz RR Langmuir; 2024 Apr; 40(15):7896-7906. PubMed ID: 38578930 [TBL] [Abstract][Full Text] [Related]
26. Hydration force and bilayer deformation: a reevaluation. McIntosh TJ; Simon SA Biochemistry; 1986 Jul; 25(14):4058-66. PubMed ID: 2427111 [TBL] [Abstract][Full Text] [Related]
27. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers. McMullen TP; Lewis RN; McElhaney RN Biochim Biophys Acta; 1999 Jan; 1416(1-2):119-34. PubMed ID: 9889344 [TBL] [Abstract][Full Text] [Related]
28. Lipid headgroup superlattice modulates the activity of surface-acting cholesterol oxidase in ternary phospholipid/cholesterol bilayers. Cheng KH; Cannon B; Metze J; Lewis A; Huang J; Vaughn MW; Zhu Q; Somerharju P; Virtanen J Biochemistry; 2006 Sep; 45(36):10855-64. PubMed ID: 16953571 [TBL] [Abstract][Full Text] [Related]
29. Phospholipid-Cellulose Interactions: Insight from Atomistic Computer Simulations for Understanding the Impact of Cellulose-Based Materials on Plasma Membranes. Gurtovenko AA; Mukhamadiarov EI; Kostritskii AY; Karttunen M J Phys Chem B; 2018 Nov; 122(43):9973-9981. PubMed ID: 30295483 [TBL] [Abstract][Full Text] [Related]
30. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Rand RP; Fuller NL; Gruner SM; Parsegian VA Biochemistry; 1990 Jan; 29(1):76-87. PubMed ID: 2322550 [TBL] [Abstract][Full Text] [Related]
31. 31P and 2H NMR studies of structure and motion in bilayers of phosphatidylcholine and phosphatidylethanolamine. Ghosh R Biochemistry; 1988 Oct; 27(20):7750-8. PubMed ID: 3207706 [TBL] [Abstract][Full Text] [Related]
32. The relationship between water vapor absorption and desorption by phospholipids and bilayer phase transitions. Mansour HM; Zografi G J Pharm Sci; 2007 Feb; 96(2):377-96. PubMed ID: 17080427 [TBL] [Abstract][Full Text] [Related]
33. Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations. Zhang M; Ren B; Liu Y; Liang G; Sun Y; Xu L; Zheng J ACS Chem Neurosci; 2017 Aug; 8(8):1789-1800. PubMed ID: 28585804 [TBL] [Abstract][Full Text] [Related]
34. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042 [TBL] [Abstract][Full Text] [Related]
35. Binding of divalent cations of dipalmitoylphosphatidylcholine bilayers and its effect on bilayer interaction. Lis LJ; Parsegian VA; Rand RP Biochemistry; 1981 Mar; 20(7):1761-70. PubMed ID: 6164391 [TBL] [Abstract][Full Text] [Related]
36. Conformation of fatty acyl chains in alpha- and beta-phosphatidylcholine and phosphatidylethanolamine derivatives in sonicated vesicles. Plückthun A; DeBony J; Fanni T; Dennis EA Biochim Biophys Acta; 1986 Mar; 856(1):144-54. PubMed ID: 3955032 [TBL] [Abstract][Full Text] [Related]
37. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Murzyn K; Róg T; Pasenkiewicz-Gierula M Biophys J; 2005 Feb; 88(2):1091-103. PubMed ID: 15556990 [TBL] [Abstract][Full Text] [Related]
38. Molecular dynamics investigation of the structural properties of phosphatidylethanolamine lipid bilayers. Suits F; Pitman MC; Feller SE J Chem Phys; 2005 Jun; 122(24):244714. PubMed ID: 16035800 [TBL] [Abstract][Full Text] [Related]
39. A model of hydrogen bond formation in phosphatidylethanolamine bilayers. Pink DA; McNeil S; Quinn B; Zuckermann MJ Biochim Biophys Acta; 1998 Jan; 1368(2):289-305. PubMed ID: 9459606 [TBL] [Abstract][Full Text] [Related]
40. The anionic phospholipid-mediated membrane interaction of the anti-cancer drug doxorubicin is enhanced by phosphatidylethanolamine compared to other zwitterionic phospholipids. Speelmans G; Staffhorst RWHM ; de Kruijff B Biochemistry; 1997 Jul; 36(28):8657-62. PubMed ID: 9214313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]