BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 3207711)

  • 1. Stereoselectivity of the guanyl-exchangeable nucleotide-binding site of tubulin probed by guanosine 5'-O-(2-thiotriphosphate) diastereoisomers.
    Roychowdhury S; Gaskin F
    Biochemistry; 1988 Oct; 27(20):7799-805. PubMed ID: 3207711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of tubulin with guanosine 5'-O-(1-thiotriphosphate) diastereoisomers: specificity of the alpha-phosphate binding region.
    Xu S; Gaskin F
    Biochemistry; 1994 Oct; 33(39):11884-90. PubMed ID: 7918407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the ATP binding site of tubulin with thiotriphosphate analogues of ATP.
    Xu S; Gaskin F
    Biochim Biophys Acta; 1998 Mar; 1383(1):111-22. PubMed ID: 9546052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium requirements for guanosine 5'-O-(3-thiotriphosphate) induced assembly of microtubule protein and tubulin.
    Roychowdhury S; Gaskin F
    Biochemistry; 1986 Dec; 25(24):7847-53. PubMed ID: 3542038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanosine 5'-O-(3-thiotriphosphate), a potent nucleotide inhibitor of microtubule assembly.
    Hamel E; Lin CM
    J Biol Chem; 1984 Sep; 259(17):11060-9. PubMed ID: 6381495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of diastereomers of guanosine 5'-O-(1-thiotriphosphate) and guanosine 5'-O-(2-thiotriphosphate).
    Connolly BA; Romaniuk PJ; Eckstein F
    Biochemistry; 1982 Apr; 21(9):1983-9. PubMed ID: 7093223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis.
    Vulevic B; Correia JJ
    Biophys J; 1997 Mar; 72(3):1357-75. PubMed ID: 9138581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reexamination of the role of nonhydrolyzable guanosine 5'-triphosphate analogues in tubulin polymerization: reaction conditions are a critical factor for effective interactions at the exchangeable nucleotide site.
    Hamel E; Lin CM
    Biochemistry; 1990 Mar; 29(11):2720-9. PubMed ID: 2346744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of nucleotide phosphorothioate diastereomers to define the structure of metal-nucleotide bound to GTP-AMP and ATP-AMP phosphotransferases from beef-heart mitochondria.
    Tomasselli AG; Marquetant R; Noda LH; Goody RS
    Eur J Biochem; 1984 Jul; 142(2):287-9. PubMed ID: 6086346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The active GTP- and ground GDP-liganded states of tubulin are distinguished by the binding of chiral isomers of ethyl 5-amino-2-methyl-1,2-dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl carbamate.
    Barbier P; Peyrot V; Leynadier D; Andreu JM
    Biochemistry; 1998 Jan; 37(2):758-68. PubMed ID: 9425100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of pure tubulin in the absence of free GTP: effect of magnesium, glycerol, ATP, and the nonhydrolyzable GTP analogues.
    O'Brien ET; Erickson HP
    Biochemistry; 1989 Feb; 28(3):1413-22. PubMed ID: 2713372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GTP analogues interact with the tubulin exchangeable site during assembly and upon binding.
    Mejillano MR; Barton JS; Nath JP; Himes RH
    Biochemistry; 1990 Feb; 29(5):1208-16. PubMed ID: 2108723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of microtubules from tubulin bearing the nonhydrolyzable guanosine triphosphate analogue GMPPCP [guanylyl 5'-(beta, gamma-methylenediphosphonate)]: variability of growth rates and the hydrolysis of GTP.
    Dye RB; Williams RC
    Biochemistry; 1996 Nov; 35(45):14331-9. PubMed ID: 8916920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the dianionic form of the GTP gamma-phosphate in the polymerization process of tubulin.
    Monasterio O; Timasheff SN
    Arch Biol Med Exp; 1985 Dec; 18(3-4):325-9. PubMed ID: 3915858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of tubulin assembly: guanosine 5'-triphosphate hydrolysis decreases the rate of microtubule depolymerization.
    Bonne D; Pantaloni D
    Biochemistry; 1982 Mar; 21(5):1075-81. PubMed ID: 7074050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization.
    Carlier MF; Pantaloni D
    Biochemistry; 1981 Mar; 20(7):1918-24. PubMed ID: 7225365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guanosine thiophosphate derivatives as substrate analogues for phosphoenolpyruvate carboxykinase.
    Lee MH; Goody RS; Nowak T
    Biochemistry; 1985 Dec; 24(26):7594-602. PubMed ID: 3912004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linkage between ligand binding and control of tubulin conformation.
    Shearwin KE; Timasheff SN
    Biochemistry; 1992 Sep; 31(34):8080-9. PubMed ID: 1510990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of tubulin with guanine nucleotides that have paclitaxel-like effects on tubulin assembly: 2',3'-dideoxyguanosine 5'-[alpha,beta-methylene]triphosphate, guanosine 5'-[alpha,beta-methylene]triphosphate, and 2',3'-dideoxyguanosine 5'-triphosphate.
    Hamel E; Vaughns J; Getahun Z; Johnson R; Lin CM
    Arch Biochem Biophys; 1995 Oct; 322(2):486-99. PubMed ID: 7574725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerization of the tubulin-colchicine complex and guanosine 5'-triphosphate hydrolysis.
    Saltarelli D; Pantaloni D
    Biochemistry; 1982 Jun; 21(12):2996-3006. PubMed ID: 7104309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.