BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3207714)

  • 1. Comparative triplet-state properties of the three tryptophan residues in bacteriophage T4 lysozyme and in the enzyme complex with methylmercury(II).
    Zang LH; Ghosh S; Maki AH
    Biochemistry; 1988 Oct; 27(20):7820-5. PubMed ID: 3207714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbation of tryptophan residues by point mutations in bacteriophage T4 lysozyme studied by optical detection of triplet-state magnetic resonance spectroscopy.
    Zang LH; Ghosh S; Maki AH
    Biochemistry; 1989 Mar; 28(5):2245-51. PubMed ID: 2719950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triplet state of tryptophan in proteins. 2. Differentiation between tryptophan residues 62 and 108 in lysozyme.
    Rousslang KW; Thomasson JM; Rose JB; Kwiram AL
    Biochemistry; 1979 May; 18(11):2296-300. PubMed ID: 444457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically detected magnetic resonance study of the interaction of an arsenic(III) derivative of cacodylic acid with EcoRI methyl transferase.
    Tsao DH; Maki AH
    Biochemistry; 1991 May; 30(18):4565-72. PubMed ID: 2021649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triplet state properties of tryptophan residues in complexes of mutated Escherichia coli single-stranded DNA binding proteins with single-stranded polynucleotides.
    Tsao DH; Casas-Finet JR; Maki AH; Chase JW
    Biophys J; 1989 May; 55(5):927-36. PubMed ID: 2655732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically detected magnetic resonance study of tyrosine residues in point-mutated bacteriophage T4 lysozyme.
    Ghosh S; Zang LH; Maki AH
    Biochemistry; 1988 Oct; 27(20):7816-20. PubMed ID: 3207713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of complexes formed between gene 32 protein from bacteriophage T4 and heavy-atom-modified single-stranded polynucleotides using optical detection of magnetic resonance.
    Khamis MI; Maki AH
    Biochemistry; 1986 Oct; 25(20):5865-72. PubMed ID: 3539180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical detection of triplet-state magnetic resonance studies on individual tryptophan residues of serum albumin: correlation between phosphorescence and zero-field splittings.
    Mao SY; Maki AH
    Biochemistry; 1987 Jun; 26(11):3106-14. PubMed ID: 3607014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorescence/microwave double-resonance spectra of tryptophan perturbed by methylmercury(II).
    Davis JM; Maki AH
    Proc Natl Acad Sci U S A; 1982 Jul; 79(14):4313-6. PubMed ID: 6956860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Close range interactions between nucleotide bases and tryptophan residues in an Escherichia coli single-stranded DNA binding protein-mercurated poly(uridylic acid) complex. A study by optically detected magnetic resonance spectroscopy.
    Cha TA; Maki AH
    J Biol Chem; 1984 Jan; 259(2):1105-9. PubMed ID: 6363401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triplet state sublevel kinetics of tryptophan 54 in the complex of Escherichia coli single-stranded DNA binding protein with single-stranded poly(deoxythymidylic) acid.
    Zang LH; Maki AH; Murphy JB; Chase JW
    Biophys J; 1987 Nov; 52(5):867-72. PubMed ID: 3322418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photophysics of tryptophan in bacteriophage T4 lysozymes.
    Harris DL; Hudson BS
    Biochemistry; 1990 Jun; 29(22):5276-85. PubMed ID: 2383546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorescence and optically detected magnetic resonance study of the tryptophan residue in human serum albumin.
    Bell KL; Brenner HC
    Biochemistry; 1982 Feb; 21(4):799-804. PubMed ID: 7074042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stacking interactions of tryptophan residues and nucleotide bases in complexes formed between Escherichia coli single-stranded DNA binding protein and heavy atom-modified poly(uridylic) acid. A study by optically detected magnetic resonance spectroscopy.
    Khamis MI; Casas-Finet JR; Maki AH
    J Biol Chem; 1987 Feb; 262(4):1725-33. PubMed ID: 3543012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of Trp 138 in T4 lysozyme by mutations at Gln 105 used to correlate changes in structure, stability, solvation, and spectroscopic properties.
    Pjura P; McIntosh LP; Wozniak JA; Matthews BW
    Proteins; 1993 Apr; 15(4):401-12. PubMed ID: 8460110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative phosphorescence and optically detected magnetic resonance studies of pig and yeast glyceraldehyde-3-phosphate dehydrogenase.
    Davis JM; Maki AH
    Biochemistry; 1984 Dec; 23(25):6249-56. PubMed ID: 6395896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative phosphorescence and optically detected magnetic resonance studies of fatty acid binding to serum albumin.
    Mao SY; Maki AH
    Biochemistry; 1987 Jun; 26(12):3576-82. PubMed ID: 3651398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins.
    Gonnelli M; Strambini GB
    Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triplet state of tryptophan in proteins: the nature of the optically detected magnetic resonance lines.
    Rousslang KW; Ross JB; Deranleau DA; Kwiram AL
    Biochemistry; 1978 Mar; 17(6):1087-92. PubMed ID: 629948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in the state of tryptophan residues in T4 phage lysozyme during binding to a competitive inhibitor].
    Vedenkina NS; Troitskiĭ AV; Burshten EA
    Mol Biol (Mosk); 1984; 18(2):362-9. PubMed ID: 6371490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.