These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 3207715)
1. Sigmoidal relation between mitochondrial respiration and log ([ATP]/[ADP])out under conditions of extramitochondrial ATP utilization. Implications for the control and thermodynamics of oxidative phosphorylation. Wanders RJ; Westerhoff HV Biochemistry; 1988 Oct; 27(20):7832-40. PubMed ID: 3207715 [TBL] [Abstract][Full Text] [Related]
2. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria. Wanders RJ; Groen AK; Van Roermund CW; Tager JM Eur J Biochem; 1984 Jul; 142(2):417-24. PubMed ID: 6086353 [TBL] [Abstract][Full Text] [Related]
3. Effect of the extramitochondrial adenine nucleotide pool size on oxidative phosphorylation in isolated rat liver mitochondria. Schild L; Gellerich FN Eur J Biochem; 1998 Mar; 252(3):508-12. PubMed ID: 9546667 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by [ATP]/[ADP] ratios. Jacobus WE; Moreadith RW; Vandegaer KM J Biol Chem; 1982 Mar; 257(5):2397-402. PubMed ID: 7061429 [TBL] [Abstract][Full Text] [Related]
5. Determination of the free-energy difference of the adenine nucleotide translocator reaction in rat-liver mitochondria using intra- and extramitochondrial ATP-utilizing reactions. Wanders RJ; Groen AK; Meijer AJ; Tager JM FEBS Lett; 1981 Sep; 132(2):201-6. PubMed ID: 6271588 [No Abstract] [Full Text] [Related]
6. Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes. Gellerich FN; Bohnensack R; Kunz W Biochim Biophys Acta; 1983 Feb; 722(2):381-91. PubMed ID: 6301555 [TBL] [Abstract][Full Text] [Related]
7. Rate control of phosphorylation-coupled respiration by rat liver mitochondria. Davis EJ; Davis-Van Thienen WI Arch Biochem Biophys; 1984 Sep; 233(2):573-81. PubMed ID: 6486800 [TBL] [Abstract][Full Text] [Related]
9. The ATP-to-oxygen stoichiometries of oxidative phosphorylation by rat liver mitochondria. An analysis of ADP-induced oxygen jumps by linear nonequilibrium thermodynamics. Lemasters JJ J Biol Chem; 1984 Nov; 259(21):13123-30. PubMed ID: 6548475 [TBL] [Abstract][Full Text] [Related]
10. Influence of different energy drains on the interrelationship between the rate of respiration, proton-motive force and adenine nucleotide patterns in isolated mitochondria. Küster U; Letko G; Kunz W; Duszyńsky J; Bogucka K; Wojtczak L Biochim Biophys Acta; 1981 Jun; 636(1):32-8. PubMed ID: 7284343 [TBL] [Abstract][Full Text] [Related]
11. Relation between extra- and intramitochondrial ATP/ADP ratios in rat liver mitochondria. Brawand F; Folly G; Walter P Biochim Biophys Acta; 1980 May; 590(3):285-9. PubMed ID: 6445752 [TBL] [Abstract][Full Text] [Related]
12. Control of oxidative phosphorylation by the extra-mitochondrial ATP/ADP ratio. Küster U; Bohnensack R; Kunz W Biochim Biophys Acta; 1976 Aug; 440(2):391-402. PubMed ID: 952975 [TBL] [Abstract][Full Text] [Related]
13. Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: role of adenine nucleotide translocator. Quentin E; Avéret N; Guérin B; Rigoulet M Biochem Biophys Res Commun; 1994 Jul; 202(2):816-21. PubMed ID: 8048953 [TBL] [Abstract][Full Text] [Related]
14. The role of the adenine nucleotide translocator in oxidative phosphorylation. A theoretical investigation on the basis of a comprehensive rate law of the translocator. Bohnensack R J Bioenerg Biomembr; 1982 Feb; 14(1):45-61. PubMed ID: 6292176 [TBL] [Abstract][Full Text] [Related]
15. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier. Devin A; Guérin B; Rigoulet M Biochim Biophys Acta; 1996 Jan; 1273(1):13-20. PubMed ID: 8573591 [TBL] [Abstract][Full Text] [Related]
16. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver. Soboll S; Scholz R; Heldt HW Eur J Biochem; 1978 Jun; 87(2):377-90. PubMed ID: 668699 [TBL] [Abstract][Full Text] [Related]
17. Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Gellerich FN; Schlame M; Bohnensack R; Kunz W Biochim Biophys Acta; 1987 Feb; 890(2):117-26. PubMed ID: 3801462 [TBL] [Abstract][Full Text] [Related]
18. Metabolic control of mitochondrial properties by adenine nucleotide translocator determines palmitoyl-CoA effects. Implications for a mechanism linking obesity and type 2 diabetes. Ciapaite J; Bakker SJ; Diamant M; van Eikenhorst G; Heine RJ; Westerhoff HV; Krab K FEBS J; 2006 Dec; 273(23):5288-302. PubMed ID: 17059463 [TBL] [Abstract][Full Text] [Related]
19. Binding of the intramitochondrial ADP and its relationship to adenine nucleotide translocation. Wilson DF; Nelson D; Erecińska M FEBS Lett; 1982 Jul; 143(2):228-32. PubMed ID: 6288461 [No Abstract] [Full Text] [Related]
20. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP. BeltrandelRio H; Wilson JE Arch Biochem Biophys; 1991 Apr; 286(1):183-94. PubMed ID: 1897945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]