These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 32077245)
1. "Clickable" and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide-Specific Cell Attachment. Poręba R; de Los Santos Pereira A; Pola R; Jiang S; Pop-Georgievski O; Sedláková Z; Schönherr H Macromol Biosci; 2020 Apr; 20(4):e1900354. PubMed ID: 32077245 [TBL] [Abstract][Full Text] [Related]
2. Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. Sivkova R; Táborská J; Reparaz A; de Los Santos Pereira A; Kotelnikov I; Proks V; Kučka J; Svoboda J; Riedel T; Pop-Georgievski O Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32947982 [TBL] [Abstract][Full Text] [Related]
3. Biocompatible Azide-Alkyne "Click" Reactions for Surface Decoration of Glyco-Engineered Cells. Gutmann M; Memmel E; Braun AC; Seibel J; Meinel L; Lühmann T Chembiochem; 2016 May; 17(9):866-75. PubMed ID: 26818821 [TBL] [Abstract][Full Text] [Related]
4. Rate determination of azide click reactions onto alkyne polymer brush scaffolds: a comparison of conventional and catalyst-free cycloadditions for tunable surface modification. Orski SV; Sheppard GR; Arumugam S; Arnold RM; Popik VV; Locklin J Langmuir; 2012 Oct; 28(41):14693-702. PubMed ID: 23009188 [TBL] [Abstract][Full Text] [Related]
5. Chemoselective modification of turnip yellow mosaic virus by Cu(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction and its application in cell binding. Zeng Q; Saha S; Lee LA; Barnhill H; Oxsher J; Dreher T; Wang Q Bioconjug Chem; 2011 Jan; 22(1):58-66. PubMed ID: 21166476 [TBL] [Abstract][Full Text] [Related]
6. A "clickable" titanium surface platform. Watson MA; Lyskawa J; Zobrist C; Fournier D; Jimenez M; Traisnel M; Gengembre L; Woisel P Langmuir; 2010 Oct; 26(20):15920-4. PubMed ID: 20853821 [TBL] [Abstract][Full Text] [Related]
7. Modification of Protein Scaffolds via Copper-Catalyzed Azide-Alkyne Cycloaddition. Presolski S Methods Mol Biol; 2018; 1798():187-193. PubMed ID: 29868960 [TBL] [Abstract][Full Text] [Related]
8. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Zhu L; Brassard CJ; Zhang X; Guha PM; Clark RJ Chem Rec; 2016 Jun; 16(3):1501-17. PubMed ID: 27216993 [TBL] [Abstract][Full Text] [Related]
9. Orthogonal Synthesis of Block Copolymer via Photoinduced CuAAC and Ketene Chemistries. Tasdelen MA; Taskin OS; Celik C Macromol Rapid Commun; 2016 Mar; 37(6):521-6. PubMed ID: 26847166 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of Polystyrene and Poly(4-vinylpyridine) Mixed Grafted Silica Nanoparticles via a Combination of ATRP and Cu Wu L; Glebe U; Böker A Macromol Rapid Commun; 2017 Jan; 38(1):. PubMed ID: 27734553 [TBL] [Abstract][Full Text] [Related]
11. Copper-Free Azide-Alkyne Cycloaddition for Peptide Modification of Alginate Hydrogels. Jain E; Neal S; Graf H; Tan X; Balasubramaniam R; Huebsch N ACS Appl Bio Mater; 2021 Feb; 4(2):1229-1237. PubMed ID: 35014476 [TBL] [Abstract][Full Text] [Related]
12. Decoration of Coiled-Coil Peptides with N-Cysteine Peptide Thioesters As Cyclic Peptide Precursors Using Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) Click Reaction. Rink WM; Thomas F Org Lett; 2018 Dec; 20(23):7493-7497. PubMed ID: 30407016 [TBL] [Abstract][Full Text] [Related]
13. Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings. Donahoe CD; Cohen TL; Li W; Nguyen PK; Fortner JD; Mitra RD; Elbert DL Langmuir; 2013 Mar; 29(12):4128-39. PubMed ID: 23441808 [TBL] [Abstract][Full Text] [Related]
14. Cyclic Multiblock Copolymers via Combination of Iterative Cu(0)-Mediated Radical Polymerization and Cu(I)-Catalyzed Azide-Alkyne Cycloaddition Reaction. Xiao L; Zhu W; Chen J; Zhang K Macromol Rapid Commun; 2017 Feb; 38(4):. PubMed ID: 28044375 [TBL] [Abstract][Full Text] [Related]
15. Biocompatible silicon surfaces through orthogonal click chemistries and a high affinity silicon oxide binding peptide. Hassert R; Pagel M; Ming Z; Häupl T; Abel B; Braun K; Wiessler M; Beck-Sickinger AG Bioconjug Chem; 2012 Oct; 23(10):2129-37. PubMed ID: 22989005 [TBL] [Abstract][Full Text] [Related]
16. A comparison of triazole-forming bioconjugation techniques for constructing comb-shaped peptide-polymer bioconjugates. Canalle LA; van der Knaap M; Overhand M; van Hest JC Macromol Rapid Commun; 2011 Jan; 32(2):203-8. PubMed ID: 21433141 [TBL] [Abstract][Full Text] [Related]
17. Click chemistry-based functionalization on non-oxidized silicon substrates. Li Y; Cai C Chem Asian J; 2011 Oct; 6(10):2592-605. PubMed ID: 21751406 [TBL] [Abstract][Full Text] [Related]
18. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions. Zhang X; Liu P; Zhu L Molecules; 2016 Dec; 21(12):. PubMed ID: 27941684 [TBL] [Abstract][Full Text] [Related]
19. Copper-chelating azides for efficient click conjugation reactions in complex media. Bevilacqua V; King M; Chaumontet M; Nothisen M; Gabillet S; Buisson D; Puente C; Wagner A; Taran F Angew Chem Int Ed Engl; 2014 Jun; 53(23):5872-6. PubMed ID: 24788475 [TBL] [Abstract][Full Text] [Related]
20. clickECM: Development of a cell-derived extracellular matrix with azide functionalities. Ruff SM; Keller S; Wieland DE; Wittmann V; Tovar GEM; Bach M; Kluger PJ Acta Biomater; 2017 Apr; 52():159-170. PubMed ID: 27965173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]