These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3207727)

  • 1. Membrane potential in liposomes measured by the transmembrane distribution of 86Rb+, tetraphenylphosphonium or triphenylmethylphosphonium: effect of cholesterol in the lipid bilayer.
    Nakazato K; Murakami N; Konishi T; Hatano Y
    Biochim Biophys Acta; 1988 Dec; 946(1):143-50. PubMed ID: 3207727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors that determine the plasma-membrane potential in bloodstream forms of Trypanosoma brucei.
    Nolan DP; Voorheis HP
    Eur J Biochem; 2000 Aug; 267(15):4615-23. PubMed ID: 10903493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations.
    Rottenberg H
    J Membr Biol; 1984; 81(2):127-38. PubMed ID: 6492133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method of determining electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H445-52. PubMed ID: 8368347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of lipophilic cations to the liposomal membrane: thermodynamic analysis.
    Demura M; Kamo N; Kobatake Y
    Biochim Biophys Acta; 1987 Oct; 903(2):303-8. PubMed ID: 2820490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors determining the plasma-membrane potential of lymphocytes.
    Felber SM; Brand MD
    Biochem J; 1982 May; 204(2):577-85. PubMed ID: 6288022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli.
    Ahmed S; Booth IR
    Biochem J; 1981 Dec; 200(3):573-81. PubMed ID: 6282253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The membrane potential has no detectable effect on the phosphocholine headgroup conformation in large unilamellar phosphatidylcholine vesicles as determined by 2H-NMR.
    Leenhouts JM; Chupin V; de Gier J; de Kruijff B
    Biochim Biophys Acta; 1993 Dec; 1153(2):257-61. PubMed ID: 8274495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of medium amino acids on ouabain-sensitive 86Rb+ -uptake and membrane-potential dependent [3H]tetraphenylphosphonium accumulation in Friend erythroleukemia cells.
    Schaefer A; Munter KH; Rüller S
    Eur J Cell Biol; 1988 Aug; 46(3):453-7. PubMed ID: 3181165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular mitochondrial membrane potential as an indicator of hepatocyte energy metabolism: further evidence for thermodynamic control of metabolism.
    Berry MN; Gregory RB; Grivell AR; Henly DC; Nobes CD; Phillips JW; Wallace PG
    Biochim Biophys Acta; 1988 Dec; 936(3):294-306. PubMed ID: 2461736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monensin-mediated antiport of Na+ and H+ across liposome membrane.
    Nakazato K; Hatano Y
    Biochim Biophys Acta; 1991 Apr; 1064(1):103-10. PubMed ID: 1851038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma membrane potential of murine erythroleukemia cells: approach to measurement and evidence for cell-density dependence.
    Arcangeli A; Olivotto M
    J Cell Physiol; 1986 Apr; 127(1):17-27. PubMed ID: 3457015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of steroid hormones and capacitation on membrane potential of human spermatozoa.
    Calzada L; Bernal A; Loustaunau E
    Arch Androl; 1988; 21(2):121-8. PubMed ID: 3223786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane potentials in reconstituted cytochrome c oxidase proteoliposomes determined by butyltriphenyl phosphonium cation distribution.
    Singh AP; Nicholls P
    Arch Biochem Biophys; 1986 Mar; 245(2):436-45. PubMed ID: 3006593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans.
    Prasad R; Höfer M
    Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-force relationships in mitochondrial oxidative phosphorylation.
    Woelders H; Putters J; van Dam K
    FEBS Lett; 1986 Aug; 204(1):17-21. PubMed ID: 3743759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of gentamicin by Staphylococcus aureus: the role of the transmembrane electrical potential.
    Gilman S; Saunders VA
    J Antimicrob Chemother; 1986 Jan; 17(1):37-44. PubMed ID: 3949638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the plasma and mitochondrial membrane potentials of alveolar type II cells by the use of ionic probes.
    Gallo RL; Finkelstein JN; Notter RH
    Biochim Biophys Acta; 1984 Apr; 771(2):217-27. PubMed ID: 6704396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of 2-chloroadenosine on electric potentials in brain synaptic membrane vesicles.
    Michaelis ML; Michaelis EK
    Biochim Biophys Acta; 1981 Oct; 648(1):55-62. PubMed ID: 7295731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.