These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32077278)
1. Predictive Models for Human Organ Toxicity Based on Xu T; Ngan DK; Ye L; Xia M; Xie HQ; Zhao B; Simeonov A; Huang R Chem Res Toxicol; 2020 Mar; 33(3):731-741. PubMed ID: 32077278 [TBL] [Abstract][Full Text] [Related]
2. Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure. Luo X; Xu T; Ngan DK; Xia M; Zhao J; Sakamuru S; Simeonov A; Huang R Toxicol Appl Pharmacol; 2024 Nov; 492():117098. PubMed ID: 39251042 [TBL] [Abstract][Full Text] [Related]
3. Prediction of drug-induced liver injury and cardiotoxicity using chemical structure and in vitro assay data. Ye L; Ngan DK; Xu T; Liu Z; Zhao J; Sakamuru S; Zhang L; Zhao T; Xia M; Simeonov A; Huang R Toxicol Appl Pharmacol; 2022 Nov; 454():116250. PubMed ID: 36150479 [TBL] [Abstract][Full Text] [Related]
4. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Huang R; Xia M; Sakamuru S; Zhao J; Shahane SA; Attene-Ramos M; Zhao T; Austin CP; Simeonov A Nat Commun; 2016 Jan; 7():10425. PubMed ID: 26811972 [TBL] [Abstract][Full Text] [Related]
5. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Liu J; Mansouri K; Judson RS; Martin MT; Hong H; Chen M; Xu X; Thomas RS; Shah I Chem Res Toxicol; 2015 Apr; 28(4):738-51. PubMed ID: 25697799 [TBL] [Abstract][Full Text] [Related]
6. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model. Judson R; Elloumi F; Setzer RW; Li Z; Shah I BMC Bioinformatics; 2008 May; 9():241. PubMed ID: 18489778 [TBL] [Abstract][Full Text] [Related]
7. Leveraging heterogeneous data from GHS toxicity annotations, molecular and protein target descriptors and Tox21 assay readouts to predict and rationalise acute toxicity. Allen CHG; Mervin LH; Mahmoud SY; Bender A J Cheminform; 2019 May; 11(1):36. PubMed ID: 31152262 [TBL] [Abstract][Full Text] [Related]
9. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Sedykh A; Zhu H; Tang H; Zhang L; Richard A; Rusyn I; Tropsha A Environ Health Perspect; 2011 Mar; 119(3):364-70. PubMed ID: 20980217 [TBL] [Abstract][Full Text] [Related]
10. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure. Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096 [TBL] [Abstract][Full Text] [Related]
11. Paradigm shift in toxicity testing and modeling. Sun H; Xia M; Austin CP; Huang R AAPS J; 2012 Sep; 14(3):473-80. PubMed ID: 22528508 [TBL] [Abstract][Full Text] [Related]
13. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform. Hur J; Danes L; Hsieh JH; McGregor B; Krout D; Auerbach S Mol Inform; 2018 May; 37(5):e1700129. PubMed ID: 29377626 [TBL] [Abstract][Full Text] [Related]
14. Predictive modeling of biological responses in the rat liver using Ring C; Sipes NS; Hsieh JH; Carberry C; Koval LE; Klaren WD; Harris MA; Auerbach SS; Rager JE Comput Toxicol; 2021 May; 18():. PubMed ID: 34013136 [TBL] [Abstract][Full Text] [Related]
15. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. Zang Q; Rotroff DM; Judson RS J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462 [TBL] [Abstract][Full Text] [Related]
16. Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants. Wu S; Fisher J; Naciff J; Laufersweiler M; Lester C; Daston G; Blackburn K Chem Res Toxicol; 2013 Dec; 26(12):1840-61. PubMed ID: 24206190 [TBL] [Abstract][Full Text] [Related]
17. Bioactivity Signatures of Drugs vs. Environmental Chemicals Revealed by Tox21 High-Throughput Screening Assays. Ngan DK; Ye L; Wu L; Xia M; Rossoshek A; Simeonov A; Huang R Front Big Data; 2019; 2():50. PubMed ID: 33693373 [TBL] [Abstract][Full Text] [Related]
18. The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Shukla SJ; Huang R; Austin CP; Xia M Drug Discov Today; 2010 Dec; 15(23-24):997-1007. PubMed ID: 20708096 [TBL] [Abstract][Full Text] [Related]
19. Predicting oxidative stress induced by organic chemicals by using quantitative Structure-Activity relationship methods. Zhang S; Khan WA; Su L; Zhang X; Li C; Qin W; Zhao Y Ecotoxicol Environ Saf; 2020 Sep; 201():110817. PubMed ID: 32512417 [TBL] [Abstract][Full Text] [Related]
20. Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence. Lee JJ; Miller JA; Basu S; Kee TV; Loo LH Arch Toxicol; 2018 Jun; 92(6):2055-2075. PubMed ID: 29705884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]