BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32077287)

  • 21. Surface plasmon resonance biosensing.
    Piliarik M; Vaisocherová H; Homola J
    Methods Mol Biol; 2009; 503():65-88. PubMed ID: 19151937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Label-free plasmonic biosensors for point-of-care diagnostics: a review.
    Soler M; Huertas CS; Lechuga LM
    Expert Rev Mol Diagn; 2019 Jan; 19(1):71-81. PubMed ID: 30513011
    [No Abstract]   [Full Text] [Related]  

  • 23. Label-free cell-based assay using localized surface plasmon resonance biosensor.
    Endo T; Yamamura S; Kerman K; Tamiya E
    Anal Chim Acta; 2008 May; 614(2):182-9. PubMed ID: 18420049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin.
    Yan J; Wang L; Tang L; Lin L; Liu Y; Li J
    Biosens Bioelectron; 2015 Aug; 70():404-10. PubMed ID: 25845332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging.
    Wong CL; Ho HP; Yu TT; Suen YK; Chow WW; Wu SY; Law WC; Yuan W; Li WJ; Kong SK; Lin C
    Appl Opt; 2007 Apr; 46(12):2325-32. PubMed ID: 17415403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Terahertz meta-biosensor based on high-Q electrical resonance enhanced by the interference of toroidal dipole.
    Zhang C; Xue T; Zhang J; Li Z; Liu L; Xie J; Yao J; Wang G; Ye X; Zhu W
    Biosens Bioelectron; 2022 Oct; 214():114493. PubMed ID: 35780535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High sensitivity plasmonic biosensor based on nanoimprinted quasi 3D nanosquares for cell detection.
    Zhu S; Li H; Yang M; Pang SW
    Nanotechnology; 2016 Jul; 27(29):295101. PubMed ID: 27275952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SPR imaging biosensor for determination of laminin-5 as a potential cancer marker in biological material.
    Sankiewicz A; Romanowicz L; Laudanski P; Zelazowska-Rutkowska B; Puzan B; Cylwik B; Gorodkiewicz E
    Anal Bioanal Chem; 2016 Jul; 408(19):5269-76. PubMed ID: 27209594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lead identification and optimization in crude samples using label free resonant acoustic profiling.
    Schnerr HR
    J Mol Recognit; 2010; 23(6):597-603. PubMed ID: 20549603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface plasmon resonance based biosensor technique: a review.
    Guo X
    J Biophotonics; 2012 Jul; 5(7):483-501. PubMed ID: 22467335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors.
    Kim D
    J Opt Soc Am A Opt Image Sci Vis; 2006 Sep; 23(9):2307-14. PubMed ID: 16912758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple and efficient design to improve the detection of biotin-streptavidin interaction with plasmonic nanobiosensors.
    Focsan M; Campu A; Craciun AM; Potara M; Leordean C; Maniu D; Astilean S
    Biosens Bioelectron; 2016 Dec; 86():728-735. PubMed ID: 27476053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectrometer-Free Plasmonic Biosensing with Metal-Insulator-Metal Nanocup Arrays.
    Hackett LP; Ameen A; Li W; Dar FK; Goddard LL; Liu GL
    ACS Sens; 2018 Feb; 3(2):290-298. PubMed ID: 29380595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance.
    Cinel NA; Bütün S; Özbay E
    Opt Express; 2012 Jan; 20(3):2587-97. PubMed ID: 22330497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploiting Surface-Plasmon-Enhanced Light Scattering for the Design of Ultrasensitive Biosensing Modality.
    Yang CT; Wu L; Liu X; Tran NT; Bai P; Liedberg B; Wang Y; Thierry B
    Anal Chem; 2016 Dec; 88(23):11924-11930. PubMed ID: 27934101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Terahertz Liquid Biosensor Based on A Graphene Metasurface for Ultrasensitive Detection with A Quasi-Bound State in the Continuum.
    Huang C; Liang L; Chang P; Yao H; Yan X; Zhang Y; Xie Y
    Adv Mater; 2024 Mar; 36(11):e2310493. PubMed ID: 38033193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metasurface-Based Molecular Biosensing Aided by Artificial Intelligence.
    Tittl A; John-Herpin A; Leitis A; Arvelo ER; Altug H
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):14810-14822. PubMed ID: 31021045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Planar terahertz waveguides based on complementary split ring resonators.
    Kumar G; Cui A; Pandey S; Nahata A
    Opt Express; 2011 Jan; 19(2):1072-80. PubMed ID: 21263646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excitation of Surface Plasmon Resonance on Multiwalled Carbon Nanotube Metasurfaces for Pesticide Sensors.
    Wang Y; Cui Z; Zhang X; Zhang X; Zhu Y; Chen S; Hu H
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):52082-52088. PubMed ID: 33151054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.