These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 3207747)
1. Mechanisms of interaction of amino acids with phospholipid bilayers during freezing. Anchordoguy T; Carpenter JF; Loomis SH; Crowe JH Biochim Biophys Acta; 1988 Dec; 946(2):299-306. PubMed ID: 3207747 [TBL] [Abstract][Full Text] [Related]
2. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Anchordoguy TJ; Rudolph AS; Carpenter JF; Crowe JH Cryobiology; 1987 Aug; 24(4):324-31. PubMed ID: 3621976 [TBL] [Abstract][Full Text] [Related]
3. Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Anchordoguy TJ; Cecchini CA; Crowe JH; Crowe LM Cryobiology; 1991 Oct; 28(5):467-73. PubMed ID: 1752134 [TBL] [Abstract][Full Text] [Related]
4. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Rudolph AS; Crowe JH Cryobiology; 1985 Aug; 22(4):367-77. PubMed ID: 4028782 [TBL] [Abstract][Full Text] [Related]
5. The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. Boafo GF; Magar KT; Ekpo MD; Qian W; Tan S; Chen C Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293340 [TBL] [Abstract][Full Text] [Related]
6. Site of freeze-thaw damage and cryoprotection by amino acids of the calcium ATPase of sarcoplasmic reticulum. Lalonde RJ; Lepock JR; Kruuv J Biochim Biophys Acta; 1991 Aug; 1079(2):128-38. PubMed ID: 1832965 [TBL] [Abstract][Full Text] [Related]
7. Effect of amino acids on goat cauda epididymal sperm cryopreservation using a chemically defined model system. Kundu CN; Das K; Majumder GC Cryobiology; 2001 Feb; 42(1):21-7. PubMed ID: 11336486 [TBL] [Abstract][Full Text] [Related]
8. Amino acids as cryoprotectants for liposomal delivery systems. Mohammed AR; Coombes AG; Perrie Y Eur J Pharm Sci; 2007 Apr; 30(5):406-13. PubMed ID: 17317117 [TBL] [Abstract][Full Text] [Related]
9. Cryopreservation of lipid bilayers by LEA proteins from Artemia franciscana and trehalose. Moore DS; Hand SC Cryobiology; 2016 Oct; 73(2):240-7. PubMed ID: 27393243 [TBL] [Abstract][Full Text] [Related]
10. Effects of trehalose-loaded liposomes on red blood cell response to freezing and post-thaw membrane quality. Holovati JL; Gyongyossy-Issa MIC; Acker JP Cryobiology; 2009 Feb; 58(1):75-83. PubMed ID: 19059392 [TBL] [Abstract][Full Text] [Related]
11. Liposomes as an alternative to egg yolk in stallion freezing extender. Pillet E; Labbe C; Batellier F; Duchamp G; Beaumal V; Anton M; Desherces S; Schmitt E; Magistrini M Theriogenology; 2012 Jan; 77(2):268-79. PubMed ID: 21924469 [TBL] [Abstract][Full Text] [Related]
12. Quantification of damage at different stages of cryopreservation of endangered North American bison (Bison bison) semen and the effects of extender and freeze rate on post-thaw sperm quality. Hussain SA; Lessard C; Anzar M Anim Reprod Sci; 2011 Dec; 129(3-4):171-9. PubMed ID: 22240453 [TBL] [Abstract][Full Text] [Related]
13. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
14. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers. Frey S; Tamm LK Biochem J; 1990 Dec; 272(3):713-9. PubMed ID: 2176475 [TBL] [Abstract][Full Text] [Related]
15. Long-term stability of sterically stabilized liposomes by freezing and freeze-drying: Effects of cryoprotectants on structure. Stark B; Pabst G; Prassl R Eur J Pharm Sci; 2010 Nov; 41(3-4):546-55. PubMed ID: 20800680 [TBL] [Abstract][Full Text] [Related]
16. Comparison of fast (one-step) and interrupted slow cooling methods using a range of intracellular and extracellular cryoprotectants for the freeze-preservation of Plasmodium yoelii-infected mouse erythrocytes. McColm AA; Latter VS Trans R Soc Trop Med Hyg; 1986; 80(1):29-33. PubMed ID: 3726993 [TBL] [Abstract][Full Text] [Related]
17. Cryoprotection of phosphofructokinase with organic solutes: characterization of enhanced protection in the presence of divalent cations. Carpenter JF; Hand SC; Crowe LM; Crowe JH Arch Biochem Biophys; 1986 Nov; 250(2):505-12. PubMed ID: 2946263 [TBL] [Abstract][Full Text] [Related]
18. The effect of hetastarch on the stability of L-asparaginase during freeze-thaw cycling. Jameel F; Kalonia D; Bogner R PDA J Pharm Sci Technol; 1995; 49(3):127-31. PubMed ID: 7542144 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of freeze-thaw damage to liver alcohol dehydrogenase and protection by cryoprotectants and amino acids. Heinz KA; Glofcheski DJ; Lepock JR; Kruuv J Cryobiology; 1990 Oct; 27(5):521-38. PubMed ID: 2249455 [TBL] [Abstract][Full Text] [Related]
20. Cryopreservation of spinach chloroplast membranes by low-molecular-weight carbohydrates. II. Discrimination between colligative and noncolligative protection. Santarius KA; Giersch C Cryobiology; 1983 Feb; 20(1):90-9. PubMed ID: 6831914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]