BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32077475)

  • 1. NERDD: a web portal providing access to in silico tools for drug discovery.
    Stork C; Embruch G; Šícho M; de Bruyn Kops C; Chen Y; Svozil D; Kirchmair J
    Bioinformatics; 2020 Feb; 36(4):1291-1292. PubMed ID: 32077475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes.
    Šícho M; Stork C; Mazzolari A; de Bruyn Kops C; Pedretti A; Testa B; Vistoli G; Svozil D; Kirchmair J
    J Chem Inf Model; 2019 Aug; 59(8):3400-3412. PubMed ID: 31361490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment.
    Volkamer A; Kuhn D; Rippmann F; Rarey M
    Bioinformatics; 2012 Aug; 28(15):2074-5. PubMed ID: 22628523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics.
    de Bruyn Kops C; Šícho M; Mazzolari A; Kirchmair J
    Chem Res Toxicol; 2021 Feb; 34(2):286-299. PubMed ID: 32786543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism.
    de Bruyn Kops C; Stork C; Šícho M; Kochev N; Svozil D; Jeliazkova N; Kirchmair J
    Front Chem; 2019; 7():402. PubMed ID: 31249827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MetWork: a web server for natural products anticipation.
    Beauxis Y; Genta-Jouve G
    Bioinformatics; 2019 May; 35(10):1795-1796. PubMed ID: 30295702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.
    Stork C; Wagner J; Friedrich NO; de Bruyn Kops C; Šícho M; Kirchmair J
    ChemMedChem; 2018 Mar; 13(6):564-571. PubMed ID: 29285887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules.
    Chen Y; Stork C; Hirte S; Kirchmair J
    Biomolecules; 2019 Jan; 9(2):. PubMed ID: 30682850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DRUDIT: web-based DRUgs DIscovery Tools to design small molecules as modulators of biological targets.
    Lauria A; Mannino S; Gentile C; Mannino G; Martorana A; Peri D
    Bioinformatics; 2020 Mar; 36(5):1562-1569. PubMed ID: 31605102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACFIS: a web server for fragment-based drug discovery.
    Hao GF; Jiang W; Ye YN; Wu FX; Zhu XL; Guo FB; Yang GF
    Nucleic Acids Res; 2016 Jul; 44(W1):W550-6. PubMed ID: 27150808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChemBioServer: a web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery.
    Athanasiadis E; Cournia Z; Spyrou G
    Bioinformatics; 2012 Nov; 28(22):3002-3. PubMed ID: 22962344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CYANOS: a data management system for natural product drug discovery efforts using cultured microorganisms.
    Chlipala GE; Krunic A; Mo S; Sturdy M; Orjala J
    J Chem Inf Model; 2011 Jan; 51(1):171-80. PubMed ID: 21162567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Natural Products from the Biodiversity of Pakistan for Computational Drug Discovery Studies: Collection, Optimization, Design and Development of A Chemical Database (ChemDP).
    Mirza SB; Bokhari H; Fatmi MQ
    Curr Comput Aided Drug Des; 2015; 11(2):102-9. PubMed ID: 26343150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TeroKit: A Database-Driven Web Server for Terpenome Research.
    Zeng T; Liu Z; Zhuang J; Jiang Y; He W; Diao H; Lv N; Jian Y; Liang D; Qiu Y; Zhang R; Zhang F; Tang X; Wu R
    J Chem Inf Model; 2020 Apr; 60(4):2082-2090. PubMed ID: 32286817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NP-MRD: the Natural Products Magnetic Resonance Database.
    Wishart DS; Sayeeda Z; Budinski Z; Guo A; Lee BL; Berjanskii M; Rout M; Peters H; Dizon R; Mah R; Torres-Calzada C; Hiebert-Giesbrecht M; Varshavi D; Varshavi D; Oler E; Allen D; Cao X; Gautam V; Maras A; Poynton EF; Tavangar P; Yang V; van Santen JA; Ghosh R; Sarma S; Knutson E; Sullivan V; Jystad AM; Renslow R; Sumner LW; Linington RG; Cort JR
    Nucleic Acids Res; 2022 Jan; 50(D1):D665-D677. PubMed ID: 34791429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FAF-Drugs3: a web server for compound property calculation and chemical library design.
    Lagorce D; Sperandio O; Baell JB; Miteva MA; Villoutreix BO
    Nucleic Acids Res; 2015 Jul; 43(W1):W200-7. PubMed ID: 25883137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A web portal for in-silico action potential predictions.
    Williams G; Mirams GR
    J Pharmacol Toxicol Methods; 2015; 75():10-6. PubMed ID: 25963830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NetworkTrail--a web service for identifying and visualizing deregulated subnetworks.
    Stöckel D; Müller O; Kehl T; Gerasch A; Backes C; Rurainski A; Keller A; Kaufmann M; Lenhof HP
    Bioinformatics; 2013 Jul; 29(13):1702-3. PubMed ID: 23625999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections.
    Lagorce D; Maupetit J; Baell J; Sperandio O; Tufféry P; Miteva MA; Galons H; Villoutreix BO
    Bioinformatics; 2011 Jul; 27(14):2018-20. PubMed ID: 21636592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.