These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 3207757)
1. Elastic properties of the erythrocyte membrane and the critical cell volume of erythrocytes. Mosior M Biochim Biophys Acta; 1988 Dec; 946(2):429-30. PubMed ID: 3207757 [TBL] [Abstract][Full Text] [Related]
2. [The role of erythrocyte membrane carbohydrates in the determination of its elastic properties]. Bruno C; Cuppini R Boll Soc Ital Biol Sper; 1981 May; 57(9):1031-6. PubMed ID: 7284119 [No Abstract] [Full Text] [Related]
3. Shape and elasticity effects on erythrocyte electrostatic repulsion. Papadopoulos KD; Yato A; Nguyen H J Theor Biol; 1985 Apr; 113(3):545-57. PubMed ID: 3999785 [TBL] [Abstract][Full Text] [Related]
4. Simulation of shape changes and adhesion phenomena in an elastic model of erythrocytes. Leibler S; Maggs AC Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6433-5. PubMed ID: 2385601 [TBL] [Abstract][Full Text] [Related]
5. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Evans EA Biophys J; 1980 May; 30(2):265-84. PubMed ID: 7260275 [TBL] [Abstract][Full Text] [Related]
6. Mechanical properties of the human red blood cell membrane at -15 degrees C. Thom F Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084 [TBL] [Abstract][Full Text] [Related]
8. [Experiment studies on viscoelastic properties of erythrocyte membrane in patients with pulmonale during acute exacerbation]. Zhang Y; Gu S; Qin J; Wu Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):182-5. PubMed ID: 17333918 [TBL] [Abstract][Full Text] [Related]
9. An improved method for studying the elastic properties of erythrocyte membranes. Missirlis YF; Brain MC Blood; 1979 Nov; 54(5):1069-79. PubMed ID: 497397 [No Abstract] [Full Text] [Related]
10. A possible mechanism determining the stability of spiculated red blood cells. Iglic A J Biomech; 1997 Jan; 30(1):35-40. PubMed ID: 8970922 [TBL] [Abstract][Full Text] [Related]
11. Erythrocytes in Duchenne dystrophy: osmotic fragility and membrane deformability. Somer H; Chien S; Sung LA; Thurn A Neurology; 1979 Apr; 29(4):519-22. PubMed ID: 571552 [TBL] [Abstract][Full Text] [Related]
12. Quasi-elastic light scattering studies of membrane motion in single red blood cells. Tishler RB; Carlson FD Biophys J; 1987 Jun; 51(6):993-7. PubMed ID: 3607216 [TBL] [Abstract][Full Text] [Related]
13. Stimulation of calcium transport in inside-out vesicles of human erythrocyte membranes by a soluble cytoplasmic activator. Macintyre JD; Green JW Biochim Biophys Acta; 1978 Jul; 510(2):373-7. PubMed ID: 667051 [TBL] [Abstract][Full Text] [Related]
14. Biophysical correlates of lysophosphatidylcholine- and ethanol-mediated shape transformation and hemolysis of human erythrocytes. Membrane viscoelasticity and NMR measurement. Chi LM; Wu WG; Sung KL; Chien S Biochim Biophys Acta; 1990 Aug; 1027(2):163-71. PubMed ID: 2397228 [TBL] [Abstract][Full Text] [Related]
15. Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton. Levin S; Korenstein R Biophys J; 1991 Sep; 60(3):733-7. PubMed ID: 1932557 [TBL] [Abstract][Full Text] [Related]
16. [Structure and physiological functions of erythrocytes--hemolysis and membrane permeability]. Uyesaka N; Shinagawa Y Nihon Rinsho; 1979 Dec; 37(12):3845-52. PubMed ID: 537174 [No Abstract] [Full Text] [Related]
17. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Evans EA Biophys J; 1983 Jul; 43(1):27-30. PubMed ID: 6882860 [TBL] [Abstract][Full Text] [Related]
18. Can melatonin delay oxidative damage of human erythrocytes during prolonged incubation? Krokosz A; Grebowski J; Szweda-Lewandowska Z; Rodacka A; Puchala M Adv Med Sci; 2013; 58(1):134-42. PubMed ID: 23640945 [TBL] [Abstract][Full Text] [Related]
19. Dextran protection of erythrocytes from low-pH-induced hemolysis. Cudd A; Arvinte T; Schulz B; Nicolau C FEBS Lett; 1989 Jul; 250(2):293-6. PubMed ID: 2473916 [TBL] [Abstract][Full Text] [Related]
20. The physico-mathematical theory of human erythrocyte hypotonic hemolysis phenomenon. Gordienko EA; Gordienko YE; Gordienko OI Cryo Letters; 2003; 24(4):229-44. PubMed ID: 12955170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]