BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3207758)

  • 1. Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism.
    Naftalin RJ
    Biochim Biophys Acta; 1988 Dec; 946(2):431-8. PubMed ID: 3207758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A; Helgerson AL
    Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single half-turnover of the glucose carrier of the human erythrocyte.
    Lowe AG; Walmsley AR
    Biochim Biophys Acta; 1987 Oct; 903(3):547-50. PubMed ID: 3663659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetics of glucose transport in human red blood cells.
    Lowe AG; Walmsley AR
    Biochim Biophys Acta; 1986 May; 857(2):146-54. PubMed ID: 3707948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The one-site model of human erythrocyte glucose transport: testing its predictions using network thermodynamic computer simulations.
    May JM
    Biochim Biophys Acta; 1991 Apr; 1064(1):1-6. PubMed ID: 2025630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C.
    Wheeler TJ
    Biochim Biophys Acta; 1986 Nov; 862(2):387-98. PubMed ID: 3778899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ATP depletion on the mechanism of hexose transport in intact human erythrocytes.
    May JM
    FEBS Lett; 1988 Dec; 241(1-2):188-90. PubMed ID: 3143605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes.
    Krupka RM
    J Membr Biol; 1985; 83(1-2):71-80. PubMed ID: 4039758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport.
    Wheeler TJ; Whelan JD
    Biochemistry; 1988 Mar; 27(5):1441-50. PubMed ID: 3365399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction of an exofacial sulfhydryl group on the erythrocyte hexose carrier with an impermeant maleimide. Relevance to the mechanism of hexose transport.
    May JM
    J Biol Chem; 1988 Sep; 263(27):13635-40. PubMed ID: 3417676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The competitive inhibition of glucose transport in human erythrocytes by compounds of different structures.
    Lacko L; Wittke B
    Biochem Pharmacol; 1982 May; 31(10):1925-9. PubMed ID: 7104025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maltosyl isothiocyanate: an affinity label for the glucose transporter of the human erythrocyte membrane. 1. Inhibition of glucose transport.
    Mullins RE; Langdon RG
    Biochemistry; 1980 Mar; 19(6):1199-205. PubMed ID: 7189410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of hexose transport and labelling of the hexose carrier in human erythrocytes by an impermeant maleimide derivative of maltose.
    May JM
    Biochem J; 1988 Sep; 254(2):329-36. PubMed ID: 3178762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane.
    Baker GF; Naftalin RJ
    Biochim Biophys Acta; 1979 Feb; 550(3):474-84. PubMed ID: 420829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of high pressure on glucose transport in the human erythrocyte.
    Naftalin RJ; Afzal I; Browning JA; Wilkins RJ; Ellory JC
    J Membr Biol; 2002 Apr; 186(3):113-29. PubMed ID: 12148839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence from temperature studies that the human erythrocyte hexose transporter has a transient memory of its dissociated ligands.
    Naftalin RJ
    Exp Physiol; 1998 Mar; 83(2):253-8. PubMed ID: 9568486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the kinetics and thermodynamics of the carrier systems for glucose and leucine in human red blood cells.
    Walmsley AR; Lowe AG
    Biochim Biophys Acta; 1987 Jul; 901(2):229-38. PubMed ID: 3607048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in red blood cell sugar transport by nanomolar concentrations of alkyl lysophospholipid.
    Melchior DL; Carruthers A; Makriyannis A; Duclos RI; Abdel-Mageed OH
    Biochim Biophys Acta; 1990 Sep; 1028(1):1-8. PubMed ID: 2207116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.