These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3207773)

  • 1. Multinomial pulse-number distributions for neural spikes in primary auditory fibers: theory.
    Teich MC; Turcott RG
    Biol Cybern; 1988; 59(2):91-102. PubMed ID: 3207773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractal character of the auditory neural spike train.
    Teich MC
    IEEE Trans Biomed Eng; 1989 Jan; 36(1):150-60. PubMed ID: 2921061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse-number distribution for the neural spike train in the cat's auditory nerve.
    Teich MC; Khanna SM
    J Acoust Soc Am; 1985 Mar; 77(3):1110-28. PubMed ID: 3980865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-spike timing of auditory-nerve fibers and comparison with auditory cortex.
    Heil P; Irvine DR
    J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for the representation of a tone in background noise in the temporal aspects of the discharge patterns of auditory-nerve fibers.
    Miller MI; Barta PE; Sachs MB
    J Acoust Soc Am; 1987 Mar; 81(3):665-79. PubMed ID: 3584674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate fluctuations and fractional power-law noise recorded from cells in the lower auditory pathway of the cat.
    Teich MC; Johnson DH; Kumar AR; Turcott RG
    Hear Res; 1990 Jun; 46(1-2):41-52. PubMed ID: 2380126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination performance of single neurons: rate and temporal-pattern information.
    Geisler WS; Albrecht DG; Salvi RJ; Saunders SS
    J Neurophysiol; 1991 Jul; 66(1):334-62. PubMed ID: 1919675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curious oddments of auditory-nerve studies.
    Kiang NY
    Hear Res; 1990 Nov; 49(1-3):1-16. PubMed ID: 2292492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes.
    Parham K; Zhao HB; Kim DO
    J Neurophysiol; 1996 Jul; 76(1):17-29. PubMed ID: 8836205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A population study of auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones.
    Kim DO; Chang SO; Sirianni JG
    J Acoust Soc Am; 1990 Apr; 87(4):1648-55. PubMed ID: 2341668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model.
    Carney LH; Yin TC
    J Neurophysiol; 1988 Nov; 60(5):1653-77. PubMed ID: 3199176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle.
    Winslow RL; Sachs MB
    Hear Res; 1988 Sep; 35(2-3):165-89. PubMed ID: 3198509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The periodogram and Allan variance reveal fractal exponents greater than unity in auditory-nerve spike trains.
    Lowen SB; Teich MC
    J Acoust Soc Am; 1996 Jun; 99(6):3585-91. PubMed ID: 8655790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling stochastic spike train responses of neurons: an extended Wiener series analysis of pigeon auditory nerve fibers.
    Joeken S; Schwegler H; Richter CP
    Biol Cybern; 1997 Feb; 76(2):153-62. PubMed ID: 9116078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate responses of auditory nerve fibers to tones in noise near masked threshold.
    Young ED; Barta PE
    J Acoust Soc Am; 1986 Feb; 79(2):426-42. PubMed ID: 3950195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):590-603. PubMed ID: 15072213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random field and neural information.
    Hervé T; Dolmazon JM; Demongeot J
    Proc Natl Acad Sci U S A; 1990 Jan; 87(2):806-10. PubMed ID: 2300564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial response profiles of posteroventral cochlear nucleus neurons and auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones.
    Kim DO; Parham K; Sirianni JG; Chang SO
    J Acoust Soc Am; 1991 Jun; 89(6):2804-17. PubMed ID: 1918624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers.
    Rhode WS; Smith PH
    Hear Res; 1985 May; 18(2):159-68. PubMed ID: 2995298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of "lower-spontaneous-rate" auditory-nerve fibers to speech syllables presented in noise. II: Glottal-pulse periodicities.
    Geisler CD; Silkes SM
    J Acoust Soc Am; 1991 Dec; 90(6):3140-8. PubMed ID: 1787251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.