These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fractal character of the auditory neural spike train. Teich MC IEEE Trans Biomed Eng; 1989 Jan; 36(1):150-60. PubMed ID: 2921061 [TBL] [Abstract][Full Text] [Related]
3. Pulse-number distribution for the neural spike train in the cat's auditory nerve. Teich MC; Khanna SM J Acoust Soc Am; 1985 Mar; 77(3):1110-28. PubMed ID: 3980865 [TBL] [Abstract][Full Text] [Related]
4. First-spike timing of auditory-nerve fibers and comparison with auditory cortex. Heil P; Irvine DR J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395 [TBL] [Abstract][Full Text] [Related]
5. Strategies for the representation of a tone in background noise in the temporal aspects of the discharge patterns of auditory-nerve fibers. Miller MI; Barta PE; Sachs MB J Acoust Soc Am; 1987 Mar; 81(3):665-79. PubMed ID: 3584674 [TBL] [Abstract][Full Text] [Related]
6. Rate fluctuations and fractional power-law noise recorded from cells in the lower auditory pathway of the cat. Teich MC; Johnson DH; Kumar AR; Turcott RG Hear Res; 1990 Jun; 46(1-2):41-52. PubMed ID: 2380126 [TBL] [Abstract][Full Text] [Related]
7. Discrimination performance of single neurons: rate and temporal-pattern information. Geisler WS; Albrecht DG; Salvi RJ; Saunders SS J Neurophysiol; 1991 Jul; 66(1):334-62. PubMed ID: 1919675 [TBL] [Abstract][Full Text] [Related]
8. Curious oddments of auditory-nerve studies. Kiang NY Hear Res; 1990 Nov; 49(1-3):1-16. PubMed ID: 2292492 [TBL] [Abstract][Full Text] [Related]
9. Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes. Parham K; Zhao HB; Kim DO J Neurophysiol; 1996 Jul; 76(1):17-29. PubMed ID: 8836205 [TBL] [Abstract][Full Text] [Related]
10. A population study of auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones. Kim DO; Chang SO; Sirianni JG J Acoust Soc Am; 1990 Apr; 87(4):1648-55. PubMed ID: 2341668 [TBL] [Abstract][Full Text] [Related]
11. Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. Carney LH; Yin TC J Neurophysiol; 1988 Nov; 60(5):1653-77. PubMed ID: 3199176 [TBL] [Abstract][Full Text] [Related]
12. Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle. Winslow RL; Sachs MB Hear Res; 1988 Sep; 35(2-3):165-89. PubMed ID: 3198509 [TBL] [Abstract][Full Text] [Related]
13. The periodogram and Allan variance reveal fractal exponents greater than unity in auditory-nerve spike trains. Lowen SB; Teich MC J Acoust Soc Am; 1996 Jun; 99(6):3585-91. PubMed ID: 8655790 [TBL] [Abstract][Full Text] [Related]
14. Modeling stochastic spike train responses of neurons: an extended Wiener series analysis of pigeon auditory nerve fibers. Joeken S; Schwegler H; Richter CP Biol Cybern; 1997 Feb; 76(2):153-62. PubMed ID: 9116078 [TBL] [Abstract][Full Text] [Related]
15. Rate responses of auditory nerve fibers to tones in noise near masked threshold. Young ED; Barta PE J Acoust Soc Am; 1986 Feb; 79(2):426-42. PubMed ID: 3950195 [TBL] [Abstract][Full Text] [Related]
16. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise. Xu Y; Collins LM IEEE Trans Biomed Eng; 2004 Apr; 51(4):590-603. PubMed ID: 15072213 [TBL] [Abstract][Full Text] [Related]