BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 32078050)

  • 21. Abundance, diversity, and vitality of mycorrhizae of Scots pine (Pinus sylvestris L.) in lignite recultivation sites.
    Münzenberger B; Golldack J; Ullrich A; Schmincke B; Hüttl RF
    Mycorrhiza; 2004 Jul; 14(3):193-202. PubMed ID: 12942357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ectomycorrhizal fungal biomass in roots and uptake of P from apatite by Pinus sylvestris seedlings growing in forest soil with and without wood ash amendment.
    Wallander H; Fossum A; Rosengren U; Jones H
    Mycorrhiza; 2005 Mar; 15(2):143-8. PubMed ID: 15221578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frost hardiness of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine roots.
    Korhonen A; Lehto T; Repo T
    Mycorrhiza; 2013 Oct; 23(7):551-9. PubMed ID: 23558517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid nitrogen loss from ectomycorrhizal pine germinants signaled by their fungal symbiont.
    Smith JM; Whiteside MD; Jones MD
    Mycorrhiza; 2020 Jul; 30(4):407-417. PubMed ID: 32363468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of Sphaeropsis Shoot Blight Disease Resistance by Applying the Ectomycorrhizal Fungus
    Wang YH; Dai Y; Kong WL; Zhu ML; Wu XQ
    Phytopathology; 2022 Jun; 112(6):1226-1234. PubMed ID: 35476587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi - impact on plant performance and ectomycorrhizal community.
    Menkis A; Vasiliauskas R; Taylor AFS; Stenlid J; Finlay R
    Mycorrhiza; 2007 Jun; 17(4):337-348. PubMed ID: 17277941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings.
    Colpaert JV; VAN Tichelen KK; VAN Assche JA; VAN Laere A
    New Phytol; 1999 Sep; 143(3):589-597. PubMed ID: 33862896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mycorrhiza formation is not needed for early growth induction and growth-related changes in polyamines in Scots pine seedlings in vitro.
    Sarjala T; Niemi K; Häggman H
    Plant Physiol Biochem; 2010 Jul; 48(7):596-601. PubMed ID: 20188581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae.
    Wagg C; Pautler M; Massicotte HB; Peterson RL
    Mycorrhiza; 2008 Feb; 18(2):103-10. PubMed ID: 18157555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd(II) impact.
    Kozdrój J; Piotrowska-Seget Z; Krupa P
    Ecotoxicology; 2007 Aug; 16(6):449-56. PubMed ID: 17541824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain.
    Rincón A; Santamaría-Pérez B; Rabasa SG; Coince A; Marçais B; Buée M
    Environ Microbiol; 2015 Aug; 17(8):3009-24. PubMed ID: 25953485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of host plant exposure to cadmium on mycorrhizal infection and soluble carbohydrate levels of Pinus sylvestris seedlings.
    Kim CG; Power SA; Bell JN
    Environ Pollut; 2004 Sep; 131(2):287-94. PubMed ID: 15234095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine.
    Jarvis S; Woodward S; Alexander IJ; Taylor AF
    Glob Chang Biol; 2013 Jun; 19(6):1688-96. PubMed ID: 23505218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interspecific selection in a diverse mycorrhizal symbiosis.
    Rúa MA; Hoeksema JD
    Sci Rep; 2024 May; 14(1):12151. PubMed ID: 38802437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality.
    Pec GJ; Simard SW; Cahill JF; Karst J
    Mycorrhiza; 2020 May; 30(2-3):173-183. PubMed ID: 32088844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multitrophic interactions between a Rhizoctonia sp. and mycorrhizal fungi affect Scots pine seedling performance in nursery soil.
    Sen R
    New Phytol; 2001 Dec; 152(3):543-553. PubMed ID: 33862988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geographic structure in a widespread plant-mycorrhizal interaction: pines and false truffles.
    Hoeksema JD; Thompson JN
    J Evol Biol; 2007 May; 20(3):1148-63. PubMed ID: 17465924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).
    Taniguchi T; Kataoka R; Tamai S; Yamanaka N; Futai K
    Mycorrhiza; 2009 Apr; 19(4):231-238. PubMed ID: 19015894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil.
    Rincón A; de Felipe MR; Fernández-Pascual M
    Mycorrhiza; 2007 Dec; 18(1):23-32. PubMed ID: 17874144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection.
    Dickie IA; Oleksyn J; Reich PB; Karolewski P; Zytkowiak R; Jagodzinski AM; Turzanska E
    Mycorrhiza; 2006 Mar; 16(2):73-79. PubMed ID: 16322987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.