These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3207824)

  • 1. Hypophosphite ion as a 31P nuclear magnetic resonance probe of membrane potential in erythrocyte suspensions.
    Kirk K; Kuchel PW; Labotka RJ
    Biophys J; 1988 Aug; 54(2):241-7. PubMed ID: 3207824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions.
    Kirk K; Kuchel PW
    J Biol Chem; 1988 Jan; 263(1):130-4. PubMed ID: 3275636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Difluorophosphate as a 19F NMR probe of erythrocyte membrane potential.
    Xu AS; Kuchel PW
    Eur Biophys J; 1991; 19(6):327-34. PubMed ID: 1915159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microviscosity of human erythrocytes studied with hypophosphite and 31P-NMR.
    Price WS; Kuchel PW; Cornell BA
    Biophys Chem; 1989 Jul; 33(3):205-15. PubMed ID: 2804239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypophosphite transport in human erythrocytes studied by overdetermined one-dimensional NMR exchange analysis.
    Price WS; Kuchel PW
    NMR Biomed; 1990 Apr; 3(2):59-63. PubMed ID: 2390454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of transmembrane chemical shift differences in the 31P NMR spectra of various phosphoryl compounds added to erythrocyte suspensions.
    Kirk K; Kuchel PW
    Biochemistry; 1988 Nov; 27(24):8795-802. PubMed ID: 3242609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microviscosity of human erythrocytes studied using hypophosphite two-spin order relaxation.
    Price WS; Perng BC; Tsai CL; Hwang LP
    Biophys J; 1992 Mar; 61(3):621-30. PubMed ID: 1504239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pH dependence of red cell membrane transport of titratable anions studied by NMR spectroscopy.
    Labotka RJ; Omachi A
    J Biol Chem; 1988 Jan; 263(3):1166-73. PubMed ID: 3335537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of membrane potential and cell volume by 19F NMR using trifluoroacetate and trifluoroacetamide probes.
    London RE; Gabel SA
    Biochemistry; 1989 Mar; 28(6):2378-82. PubMed ID: 2730869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical basis of the effect of hemoglobin on the 31P NMR chemical shifts of various phosphoryl compounds.
    Kirk K; Kuchel PW
    Biochemistry; 1988 Nov; 27(24):8803-10. PubMed ID: 3242610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of intravenous magnesium hypophosphite in calcium borogluconate solution on the serum concentration of inorganic phosphorus in healthy cows.
    Braun U; Jehle W
    Vet J; 2007 Mar; 173(2):379-83. PubMed ID: 16439170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythrocyte anion transport of phosphate analogs.
    Labotka RJ; Omachi A
    J Biol Chem; 1987 Jan; 262(1):305-11. PubMed ID: 3793727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte membrane potentials determined by hydrogen ion distribution.
    Macey RI; Adorante JS; Orme FW
    Biochim Biophys Acta; 1978 Sep; 512(2):284-95. PubMed ID: 30483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pH dependence of red cell membrane transport of titratible anions. An NMR study.
    Labotka RJ; Omachi A
    Biomed Biochim Acta; 1987; 46(2-3):S60-4. PubMed ID: 3593319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phenomenon of separate intra- and extracellular resonances of difluorophosphate in 31P and 19F NMR spectra of erythrocytes.
    Xu AS; Potts JR; Kuchel PW
    Magn Reson Med; 1991 Mar; 18(1):193-8. PubMed ID: 2062230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalar couplings as pH probes in compartmentalized biological systems: 31P NMR of phosphite.
    Eykyn TR; Kuchel PW
    Magn Reson Med; 2003 Oct; 50(4):693-6. PubMed ID: 14523953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling Staphylococcus aureus-induced septicemia using NMR.
    Plummer R; Bodkin J; Yau TW; Power D; Pantarat N; Larkin TJ; Szekely D; Bubb WA; Sorrell TC; Kuchel PW
    Magn Reson Med; 2007 Oct; 58(4):656-65. PubMed ID: 17899589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further investigation of the use of dimethyl methylphosphonate as a 31P-NMR probe of red cell volume.
    Raftos JE; Kirk K; Kuchel PW
    Biochim Biophys Acta; 1988 Feb; 968(2):160-6. PubMed ID: 3342262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for calculating the distribution of pH in tissues and a new source of pH error from the 31P-NMR spectrum.
    Graham RA; Taylor AH; Brown TR
    Am J Physiol; 1994 Feb; 266(2 Pt 2):R638-45. PubMed ID: 8141425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra- and extraerythrocyte pH at 37 degrees C and during long term storage at 4 degrees C: 31P NMR measurements and an electrochemical model of the system.
    Raftos JE; Chapman BE; Kuchel PW; Lovric VA; Stewart IM
    Haematologia (Budap); 1986; 19(4):251-68. PubMed ID: 3817608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.