These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32078285)

  • 61. Improving the Optoelectronic Properties of Mesoporous TiO
    Sidhik S; Cerdan Pasarán A; Esparza D; López Luke T; Carriles R; De la Rosa E
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3571-3580. PubMed ID: 29318870
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interfacial Engineering for High-Efficiency Nanorod Array-Structured Perovskite Solar Cells.
    Cao B; Liu H; Yang L; Li X; Liu H; Dong P; Mai X; Hou C; Wang N; Zhang J; Fan J; Gao Q; Guo Z
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33770-33780. PubMed ID: 31366197
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO
    Umeyama T; Imahori H
    Dalton Trans; 2017 Nov; 46(45):15615-15627. PubMed ID: 29072731
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells.
    Jena AK; Chen HW; Kogo A; Sanehira Y; Ikegami M; Miyasaka T
    ACS Appl Mater Interfaces; 2015 May; 7(18):9817-23. PubMed ID: 25905438
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Selective dissolution of halide perovskites as a step towards recycling solar cells.
    Kim BJ; Kim DH; Kwon SL; Park SY; Li Z; Zhu K; Jung HS
    Nat Commun; 2016 May; 7():11735. PubMed ID: 27211006
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells.
    Qiu L; Ono LK; Jiang Y; Leyden MR; Raga SR; Wang S; Qi Y
    J Phys Chem B; 2018 Jan; 122(2):511-520. PubMed ID: 28514169
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Improved morphology control using a modified two-step method for efficient perovskite solar cells.
    Bi D; El-Zohry AM; Hagfeldt A; Boschloo G
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18751-7. PubMed ID: 25317666
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Facile Sol-Gel-Derived Craterlike Dual-Functioning TiO
    Ma S; Ahn J; Oh Y; Kwon HC; Lee E; Kim K; Yun SC; Moon J
    ACS Appl Mater Interfaces; 2018 May; 10(17):14649-14658. PubMed ID: 29620844
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility.
    You J; Hong Z; Yang YM; Chen Q; Cai M; Song TB; Chen CC; Lu S; Liu Y; Zhou H; Yang Y
    ACS Nano; 2014 Feb; 8(2):1674-80. PubMed ID: 24386933
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Low-Temperature Modification of ZnO Nanoparticles Film for Electron-Transport Layers in Perovskite Solar Cells.
    Han GS; Shim HW; Lee S; Duff ML; Lee JK
    ChemSusChem; 2017 Jun; 10(11):2425-2430. PubMed ID: 28419730
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hole-Conductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode.
    Zhou H; Shi Y; Dong Q; Zhang H; Xing Y; Wang K; Du Y; Ma T
    J Phys Chem Lett; 2014 Sep; 5(18):3241-6. PubMed ID: 26276339
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ultrafast Flame Annealing of TiO
    Kim JK; Chai SU; Cho Y; Cai L; Kim SJ; Park S; Park JH; Zheng X
    Small; 2017 Nov; 13(42):. PubMed ID: 28940949
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mesoporous SnO₂ single crystals as an effective electron collector for perovskite solar cells.
    Zhu Z; Zheng X; Bai Y; Zhang T; Wang Z; Xiao S; Yang S
    Phys Chem Chem Phys; 2015 Jul; 17(28):18265-8. PubMed ID: 26105730
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells.
    Wang JT; Ball JM; Barea EM; Abate A; Alexander-Webber JA; Huang J; Saliba M; Mora-Sero I; Bisquert J; Snaith HJ; Nicholas RJ
    Nano Lett; 2014 Feb; 14(2):724-30. PubMed ID: 24341922
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Amorphous Metal Oxide Blocking Layers for Highly Efficient Low-Temperature Brookite TiO
    Kogo A; Sanehira Y; Numata Y; Ikegami M; Miyasaka T
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2224-2229. PubMed ID: 29299921
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells.
    Zhang S; Stolterfoht M; Armin A; Lin Q; Zu F; Sobus J; Jin H; Koch N; Meredith P; Burn PL; Neher D
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21681-21687. PubMed ID: 29856202
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fundamental Flaw in the Current Construction of the TiO
    Yan Y; Liu C; Yang Y; Hu G; Tiwari V; Jiang DE; Peng W; Jha A; Duan HG; Tellkamp F; Ding Y; Shi W; Yuan S; Miller D; Ma W; Zhao J
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39371-39378. PubMed ID: 34433247
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrosprayed TiO
    Ye T; Ma S; Jiang X; Petrović M; Vijila C; Ramakrishna S; Wei L
    Nanoscale; 2017 Jan; 9(1):412-420. PubMed ID: 27924339
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hydrogenated TiO
    Yao X; Liang J; Li Y; Luo J; Shi B; Wei C; Zhang D; Li B; Ding Y; Zhao Y; Zhang X
    Adv Sci (Weinh); 2017 Oct; 4(10):1700008. PubMed ID: 29051848
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25.
    Su H; Xu Z; He X; Yao Y; Zheng X; She Y; Zhu Y; Zhang J; Liu SF
    Adv Mater; 2024 Jan; 36(2):e2306724. PubMed ID: 37863645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.