These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3207840)

  • 1. Threshold for repetitive activity for a slow stimulus ramp: a memory effect and its dependence on fluctuations.
    Rinzel J; Baer SM
    Biophys J; 1988 Sep; 54(3):551-5. PubMed ID: 3207840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The standard Hodgkin-Huxley model and squid axons in reduced external Ca++ fail to accommodate to slowly rising currents.
    Jakobsson E; Guttman R
    Biophys J; 1980 Aug; 31(2):293-7. PubMed ID: 7260290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow Passage Through a Hopf Bifurcation in Excitable Nerve Cables: Spatial Delays and Spatial Memory Effects.
    Bilinsky LM; Baer SM
    Bull Math Biol; 2018 Jan; 80(1):130-150. PubMed ID: 29150760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of threshold fluctuations in nerves. I. Relationships between electrical noise and fluctuations in axon firing.
    Lecar H; Nossal R
    Biophys J; 1971 Dec; 11(12):1048-67. PubMed ID: 5167400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow acceleration and deacceleration through a Hopf bifurcation: power ramps, target nucleation, and elliptic bursting.
    Baer SM; Gaekel EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036205. PubMed ID: 18851119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Null space in the Hodgkin-Huxley Equations. A critical test.
    Best EN
    Biophys J; 1979 Jul; 27(1):87-104. PubMed ID: 262379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation properties of the squid axon membrane and model systems with current stimulation. Statistical evaluation and comparison.
    Fohlmeister JF; Adelman WJ; Poppele RE
    Biophys J; 1980 Apr; 30(1):79-97. PubMed ID: 7260270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squid axon membrane response to white noise stimulation.
    Guttman R; Feldman L; Lecar H
    Biophys J; 1974 Dec; 14(12):941-55. PubMed ID: 4429772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of delayed (K+) channels to the time-dependent clamping function in squid giant axon. I. Ascending ramps.
    Starzak ME; Senft JP; Starzak RJ
    Physiol Chem Phys; 1977; 9(6):513-32. PubMed ID: 614592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of membrane parameters on the properties of the nerve impulse.
    Sabah NH; Leibovic KN
    Biophys J; 1972 Sep; 12(9):1132-44. PubMed ID: 4341459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and rapid description of the individual ionic currents of squid axon membrane by ramp potential control.
    Fishman HM
    Biophys J; 1970 Sep; 10(9):799-817. PubMed ID: 5496903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anode break excitation in space-clamped squid axons.
    Guttman R; Hachmeister L
    Biophys J; 1972 May; 12(5):552-63. PubMed ID: 5039758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillation and repetitive firing in squid axons. Comparison of experiments with computations.
    Guttman R; Barnhill R
    J Gen Physiol; 1970 Jan; 55(1):104-18. PubMed ID: 5410485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autorhythmicity and entrainment in excitable membranes.
    Holden AV
    Biol Cybern; 1980; 38(1):1-8. PubMed ID: 7448247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A note on the discrepancy between the predicted and observed speed of the propagated action potential in the squid giant axon.
    Lindsay KA; Rosenberg JR; Tucker G
    J Theor Biol; 2004 Sep; 230(1):39-48. PubMed ID: 15275998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons.
    Connor JA; Walter D; McKown R
    Biophys J; 1977 Apr; 18(1):81-102. PubMed ID: 856318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-noise-induced transitions in electrically excitable membranes.
    Horsthemke W; Lefever R
    Biophys J; 1981 Aug; 35(2):415-32. PubMed ID: 7272445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of threshold fluctuations in nerves. II. Analysis of various sources of membrane noise.
    Lecar H; Nossal R
    Biophys J; 1971 Dec; 11(12):1068-84. PubMed ID: 5167401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing spiking in noisy type II neurons.
    Boďová K; Paydarfar D; Forger DB
    J Theor Biol; 2015 Jan; 365():40-54. PubMed ID: 25311908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noisy inputs and the induction of on-off switching behavior in a neuronal pacemaker.
    Paydarfar D; Forger DB; Clay JR
    J Neurophysiol; 2006 Dec; 96(6):3338-48. PubMed ID: 16956993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.