These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32078549)

  • 21. Action-Driven Visual Object Tracking With Deep Reinforcement Learning.
    Yun S; Choi J; Yoo Y; Yun K; Choi JY
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2239-2252. PubMed ID: 29771675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. F-RDW: Redirected Walking With Forecasting Future Position.
    Jeon SB; Jung J; Park J; Lee IK
    IEEE Trans Vis Comput Graph; 2024 Mar; PP():. PubMed ID: 38470603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redirected Walking for Exploring Immersive Virtual Spaces With HMD: A Comprehensive Review and Recent Advances.
    Fan L; Li H; Shi M
    IEEE Trans Vis Comput Graph; 2023 Oct; 29(10):4104-4123. PubMed ID: 35639681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redirected Walking using Continuous Curvature Manipulation.
    Sakono H; Matsumoto K; Narumi T; Kuzuoka H
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4278-4288. PubMed ID: 34449382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive Optimization Algorithm for Resetting Techniques in Obstacle-Ridden Environments.
    Zhang SH; Chen CH; Zheng F; Yang YL; Hu SM
    IEEE Trans Vis Comput Graph; 2023 Apr; 29(4):2080-2092. PubMed ID: 34982685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The design and evaluation of a large-scale real-walking locomotion interface.
    Peck TC; Fuchs H; Whitton MC
    IEEE Trans Vis Comput Graph; 2012 Jul; 18(7):1053-67. PubMed ID: 22184262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bending the Curve: Sensitivity to Bending of Curved Paths and Application in Room-Scale VR.
    Langbehn E; Lubos P; Bruder G; Steinicke F
    IEEE Trans Vis Comput Graph; 2017 Apr; 23(4):1389-1398. PubMed ID: 28129173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial Contraction Based on Velocity Variation for Natural Walking in Virtual Reality.
    Xu SZ; Huang K; Fan CW; Zhang SH
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2444-2453. PubMed ID: 38437083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Path-Integral-Based Reinforcement Learning Algorithm for Path Following of an Autoassembly Mobile Robot.
    Zhu W; Guo X; Fang Y; Zhang X
    IEEE Trans Neural Netw Learn Syst; 2020 Nov; 31(11):4487-4499. PubMed ID: 31880564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using perceptual illusions for redirected walking.
    Steinicke F; Bruder G
    IEEE Comput Graph Appl; 2013; 33(1):6-11. PubMed ID: 24807877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robot-assisted flexible needle insertion using universal distributional deep reinforcement learning.
    Tan X; Lee Y; Chng CB; Lim KB; Chui CK
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):341-349. PubMed ID: 31768886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling Data-Driven Dominance Traits for Virtual Characters Using Gait Analysis.
    Randhavane T; Bera A; Kubin E; Gray K; Manocha D
    IEEE Trans Vis Comput Graph; 2021 Jun; 27(6):2967-2979. PubMed ID: 31751243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On Rotation Gains Within and Beyond Perceptual Limitations for Seated VR.
    Wang C; Zhang SH; Zhang Y; Zollmann S; Hu SM
    IEEE Trans Vis Comput Graph; 2023 Jul; 29(7):3380-3391. PubMed ID: 35294351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards a Machine-Learning Approach for Sickness Prediction in 360° Stereoscopic Videos.
    Padmanaban N; Ruban T; Sitzmann V; Norcia AM; Wetzstein G
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1594-1603. PubMed ID: 29553929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding, Modeling and Simulating Unintended Positional Drift during Repetitive Steering Navigation Tasks in Virtual Reality.
    Brument H; Bruder G; Marchal M; Olivier AH; Argelaguet F
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4300-4310. PubMed ID: 34449383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Making Resets away from Targets: POI aware Redirected Walking.
    Xu SZ; Liu TQ; Liu JH; Zollmann S; Zhang SH
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3778-3787. PubMed ID: 36074875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Did we personalize? Assessing personalization by an online reinforcement learning algorithm using resampling.
    Ghosh S; Kim R; Chhabria P; Dwivedi R; Klasnja P; Liao P; Zhang K; Murphy S
    Mach Learn; 2024 Jul; 113(7):3961-3997. PubMed ID: 39221170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inferring User Intent using Bayesian Theory of Mind in Shared Avatar-Agent Virtual Environments.
    Narang S; Best A; Manocha D
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):2113-2122. PubMed ID: 30762558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients.
    Lu M; Shahn Z; Sow D; Doshi-Velez F; Lehman LH
    AMIA Annu Symp Proc; 2020; 2020():773-782. PubMed ID: 33936452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.