These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 32078580)
1. Policy gradient optimization of controllers for natural dynamic mono-pedal gait. Schallheim I; Zacksenhouse M Bioinspir Biomim; 2020 Mar; 15(3):036010. PubMed ID: 32078580 [TBL] [Abstract][Full Text] [Related]
2. Analysis and control of biped robot with variable stiffness ankle joints. Lin Z; Zang X; Zhang X; Liu Y; Heng S Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178 [TBL] [Abstract][Full Text] [Related]
3. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212 [TBL] [Abstract][Full Text] [Related]
4. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot. Ferreira JP; Crisóstomo MM; Coimbra AP IEEE Trans Neural Netw; 2009 Dec; 20(12):1885-97. PubMed ID: 19840908 [TBL] [Abstract][Full Text] [Related]
5. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
6. A reflexive neural network for dynamic biped walking control. Geng T; Porr B; Wörgötter F Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061 [TBL] [Abstract][Full Text] [Related]
7. Design of a biped robot actuated by pneumatic artificial muscles. Liu Y; Zang X; Liu X; Wang L Biomed Mater Eng; 2015; 26 Suppl 1():S757-66. PubMed ID: 26406072 [TBL] [Abstract][Full Text] [Related]
8. Minimal feedback to a rhythm generator improves the robustness to slope variations of a compass biped. Spitz J; Evstrachin A; Zacksenhouse M Bioinspir Biomim; 2015 Aug; 10(5):056005. PubMed ID: 26291076 [TBL] [Abstract][Full Text] [Related]
9. Particle Swarm Optimization aided PID gait controller design for a humanoid robot. Kashyap AK; Parhi DR ISA Trans; 2021 Aug; 114():306-330. PubMed ID: 33358185 [TBL] [Abstract][Full Text] [Related]
10. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study. Hussain S; Xie SQ; Jamwal PK IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249 [TBL] [Abstract][Full Text] [Related]
11. A flight-phase terrain following control strategy for stable and robust hopping of a one-legged robot under large terrain variations. Shemer N; Degani A Bioinspir Biomim; 2017 Aug; 12(4):046011. PubMed ID: 28524066 [TBL] [Abstract][Full Text] [Related]
12. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic. Li TH; Su YT; Lai SW; Hu JJ IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871 [TBL] [Abstract][Full Text] [Related]
13. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model. Dadashzadeh B; Esmaeili M; Macnab C PLoS One; 2017; 12(1):e0170122. PubMed ID: 28118401 [TBL] [Abstract][Full Text] [Related]
14. Robust and efficient walking with spring-like legs. Rummel J; Blum Y; Seyfarth A Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285 [TBL] [Abstract][Full Text] [Related]
15. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain. Joe HM; Oh JH Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700 [TBL] [Abstract][Full Text] [Related]
16. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning. Bing Z; Lemke C; Cheng L; Huang K; Knoll A Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929 [TBL] [Abstract][Full Text] [Related]
17. Torque-stiffness-controlled dynamic walking with central pattern generators. Huang Y; Vanderborght B; Van Ham R; Wang Q Biol Cybern; 2014 Dec; 108(6):803-23. PubMed ID: 25128320 [TBL] [Abstract][Full Text] [Related]
18. Design and control of a pneumatic musculoskeletal biped robot. Zang X; Liu Y; Liu X; Zhao J Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303 [TBL] [Abstract][Full Text] [Related]
19. Quadrupedal galloping control for a wide range of speed via vertical impulse scaling. Park HW; Kim S Bioinspir Biomim; 2015 Mar; 10(2):025003. PubMed ID: 25806404 [TBL] [Abstract][Full Text] [Related]
20. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study. Hussain S; Jamwal PK; Ghayesh MH Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]