BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 32078691)

  • 21. Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression.
    Larson JD; Kasper LH; Paugh BS; Jin H; Wu G; Kwon CH; Fan Y; Shaw TI; Silveira AB; Qu C; Xu R; Zhu X; Zhang J; Russell HR; Peters JL; Finkelstein D; Xu B; Lin T; Tinkle CL; Patay Z; Onar-Thomas A; Pounds SB; McKinnon PJ; Ellison DW; Zhang J; Baker SJ
    Cancer Cell; 2019 Jan; 35(1):140-155.e7. PubMed ID: 30595505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG.
    Ehteda A; Simon S; Franshaw L; Giorgi FM; Liu J; Joshi S; Rouaen JRC; Pang CNI; Pandher R; Mayoh C; Tang Y; Khan A; Ung C; Tolhurst O; Kankean A; Hayden E; Lehmann R; Shen S; Gopalakrishnan A; Trebilcock P; Gurova K; Gudkov AV; Norris MD; Haber M; Vittorio O; Tsoli M; Ziegler DS
    Cell Rep; 2021 Apr; 35(2):108994. PubMed ID: 33852836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Indolent course of brainstem tumors with K27M-H3.3 mutation.
    Baroni LV; Solano-Paez P; Nobre L; Michaeli O; Hawkins C; Laughlin S; Bartels U; Ramaswamy V; Bouffet E
    Pediatr Blood Cancer; 2020 Mar; 67(3):e28102. PubMed ID: 31793190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chaetocin-mediated SUV39H1 inhibition targets stemness and oncogenic networks of diffuse midline gliomas and synergizes with ONC201.
    Xin DE; Liao Y; Rao R; Ogurek S; Sengupta S; Xin M; Bayat AE; Seibel WL; Graham RT; Koschmann C; Lu QR
    Neuro Oncol; 2024 Apr; 26(4):735-748. PubMed ID: 38011799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Re-programing Chromatin with a Bifunctional LSD1/HDAC Inhibitor Induces Therapeutic Differentiation in DIPG.
    Anastas JN; Zee BM; Kalin JH; Kim M; Guo R; Alexandrescu S; Blanco MA; Giera S; Gillespie SM; Das J; Wu M; Nocco S; Bonal DM; Nguyen QD; Suva ML; Bernstein BE; Alani R; Golub TR; Cole PA; Filbin MG; Shi Y
    Cancer Cell; 2019 Nov; 36(5):528-544.e10. PubMed ID: 31631026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detecting the H3F3A mutant allele found in high-grade pediatric glioma by real-time PCR.
    Zhang R; Han J; Daniels D; Huang H; Zhang Z
    J Neurooncol; 2016 Jan; 126(1):27-36. PubMed ID: 26376656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico analysis of histone H3 gene expression during human brain development.
    Ren M; van Nocker S
    Int J Dev Biol; 2016; 60(4-6):167-73. PubMed ID: 27251074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Live-cell single-molecule dynamics of PcG proteins imposed by the DIPG H3.3K27M mutation.
    Tatavosian R; Duc HN; Huynh TN; Fang D; Schmitt B; Shi X; Deng Y; Phiel C; Yao T; Zhang Z; Wang H; Ren X
    Nat Commun; 2018 May; 9(1):2080. PubMed ID: 29802243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A kinome-wide shRNA screen uncovers vaccinia-related kinase 3 (VRK3) as an essential gene for diffuse intrinsic pontine glioma survival.
    Silva-Evangelista C; Barret E; Ménez V; Merlevede J; Kergrohen T; Saccasyn A; Oberlin E; Puget S; Beccaria K; Grill J; Castel D; Debily MA
    Oncogene; 2019 Sep; 38(38):6479-6490. PubMed ID: 31324890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy.
    Lieberman NAP; DeGolier K; Kovar HM; Davis A; Hoglund V; Stevens J; Winter C; Deutsch G; Furlan SN; Vitanza NA; Leary SES; Crane CA
    Neuro Oncol; 2019 Jan; 21(1):83-94. PubMed ID: 30169876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histone H3.3 K27M chromatin functions implicate a network of neurodevelopmental factors including ASCL1 and NEUROD1 in DIPG.
    Lewis NA; Klein RH; Kelly C; Yee J; Knoepfler PS
    Epigenetics Chromatin; 2022 May; 15(1):18. PubMed ID: 35590427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of diffuse intrinsic pontine glioma mouse models by brainstem-targeted in utero electroporation.
    Patel SK; Hartley RM; Wei X; Furnish R; Escobar-Riquelme F; Bear H; Choi K; Fuller C; Phoenix TN
    Neuro Oncol; 2020 Mar; 22(3):381-392. PubMed ID: 31638150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dimethyl alpha-ketoglutarate inhibits proliferation in diffuse intrinsic pontine glioma by reprogramming epigenetic and transcriptional networks.
    Lee K; Yun S; Park J; Lee S; Carcaboso AM; Yi SJ; Kim K
    Biochem Biophys Res Commun; 2023 Oct; 677():6-12. PubMed ID: 37523894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma.
    Ahsan S; Raabe EH; Haffner MC; Vaghasia A; Warren KE; Quezado M; Ballester LY; Nazarian J; Eberhart CG; Rodriguez FJ
    Acta Neuropathol Commun; 2014 Jun; 2():59. PubMed ID: 24894482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medulloblastoma therapy generates risk of a poorly-prognostic H3 wild-type subgroup of diffuse intrinsic pontine glioma: a report from the International DIPG Registry.
    Gits HC; Anderson M; Stallard S; Pratt D; Zon B; Howell C; Kumar-Sinha C; Vats P; Kasaian K; Polan D; Matuszak M; Spratt DE; Leonard M; Qin T; Zhao L; Leach J; Chaney B; Escorza NY; Hendershot J; Jones B; Fuller C; Leary S; Bartels U; Bouffet E; Yock TI; Robertson P; Mody R; Venneti S; Chinnaiyan AM; Fouladi M; Gottardo NG; Koschmann C
    Acta Neuropathol Commun; 2018 Jul; 6(1):67. PubMed ID: 30049282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes.
    Saratsis AM; Kambhampati M; Snyder K; Yadavilli S; Devaney JM; Harmon B; Hall J; Raabe EH; An P; Weingart M; Rood BR; Magge SN; MacDonald TJ; Packer RJ; Nazarian J
    Acta Neuropathol; 2014; 127(6):881-95. PubMed ID: 24297113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinicopathology of diffuse intrinsic pontine glioma and its redefined genomic and epigenomic landscape.
    Panditharatna E; Yaeger K; Kilburn LB; Packer RJ; Nazarian J
    Cancer Genet; 2015; 208(7-8):367-73. PubMed ID: 26206682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas.
    Wu G; Broniscer A; McEachron TA; Lu C; Paugh BS; Becksfort J; Qu C; Ding L; Huether R; Parker M; Zhang J; Gajjar A; Dyer MA; Mullighan CG; Gilbertson RJ; Mardis ER; Wilson RK; Downing JR; Ellison DW; Zhang J; Baker SJ;
    Nat Genet; 2012 Jan; 44(3):251-3. PubMed ID: 22286216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The H3K27M mutation alters stem cell growth, epigenetic regulation, and differentiation potential.
    Kfoury-Beaumont N; Prakasam R; Pondugula S; Lagas JS; Matkovich S; Gontarz P; Yang L; Yano H; Kim AH; Rubin JB; Kroll KL
    BMC Biol; 2022 May; 20(1):124. PubMed ID: 35637482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. H3 K27M-altered glioma and diffuse intrinsic pontine glioma: Semi-systematic review of treatment landscape and future directions.
    van den Bent M; Saratsis AM; Geurts M; Franceschi E
    Neuro Oncol; 2024 May; 26(Supplement_2):S110-S124. PubMed ID: 38102230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.