These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32078774)

  • 1. Membrane Structure Drives Synchronization Patterns in Arrays of Diffusively Coupled Self-Oscillating Droplets.
    Budroni MA; Torbensen K; Ristori S; Abou-Hassan A; Rossi F
    J Phys Chem Lett; 2020 Mar; 11(6):2014-2020. PubMed ID: 32078774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics.
    Torbensen K; Rossi F; Ristori S; Abou-Hassan A
    Lab Chip; 2017 Mar; 17(7):1179-1189. PubMed ID: 28239705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Approach for Tuning Communication among Chemical Oscillators Confined in Biomimetic Microcompartments.
    Rossi F; Ristori S; Abou-Hassan A
    Acc Chem Res; 2024 Sep; 57(18):2607-2619. PubMed ID: 38991143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronization scenarios induced by delayed communication in arrays of diffusively coupled autonomous chemical oscillators.
    Budroni MA; Pagano G; Conte D; Paternoster B; D'ambrosio R; Ristori S; Abou-Hassan A; Rossi F
    Phys Chem Chem Phys; 2021 Aug; 23(32):17606-17615. PubMed ID: 34369507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of a 1D array of inhibitory coupled chemical oscillators in microdroplets with global negative feedback.
    Proskurkin IS; Vanag VK
    Phys Chem Chem Phys; 2018 Jun; 20(23):16126-16137. PubMed ID: 29855029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic compartmentalization of diffusively coupled oscillators in multisomes induces a novel synchronization scenario.
    Budroni MA; Torbensen K; Pantani OL; Ristori S; Rossi F; Abou-Hassan A
    Chem Commun (Camb); 2020 Oct; 56(79):11771-11774. PubMed ID: 32966401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of coherence in a population of diffusively coupled oscillators.
    Toth R; Taylor AF
    J Chem Phys; 2006 Dec; 125(22):224708. PubMed ID: 17176155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic platform for reproducible self-assembly of chemically communicating droplet networks with predesigned number and type of the communicating compartments.
    Guzowski J; Gizynski K; Gorecki J; Garstecki P
    Lab Chip; 2016 Feb; 16(4):764-72. PubMed ID: 26785761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of the Belousov-Zhabotinsky Reaction with Phospholipid Engineered Membranes.
    Torbensen K; Rossi F; Pantani OL; Ristori S; Abou-Hassan A
    J Phys Chem B; 2015 Aug; 119(32):10224-30. PubMed ID: 26176333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors.
    Fang Y; Yashin VV; Dickerson SJ; Balazs AC
    Chaos; 2018 May; 28(5):053106. PubMed ID: 29857671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distance dependent types of coupling of chemical micro-oscillators immersed in a water-in-oil microemulsion.
    Mallphanov IL; Vanag VK
    Phys Chem Chem Phys; 2021 Apr; 23(15):9130-9138. PubMed ID: 33885122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Configurable NOR gate arrays from Belousov-Zhabotinsky micro-droplets.
    Wang AL; Gold JM; Tompkins N; Heymann M; Harrington KI; Fraden S
    Eur Phys J Spec Top; 2016 Feb; 225(1):211-227. PubMed ID: 27168916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel modes of synchronization in star networks of coupled chemical oscillators.
    Mersing D; Tyler SA; Ponboonjaroenchai B; Tinsley MR; Showalter K
    Chaos; 2021 Sep; 31(9):093127. PubMed ID: 34598462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators.
    Ohno K; Ogawa T; Suematsu NJ
    Phys Rev E; 2019 Jan; 99(1-1):012208. PubMed ID: 30780237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronicity in composite hydrogels: Belousov-Zhabotinsky (BZ) active nodes in gelatin.
    Buskohl PR; Kramb RC; Vaia RA
    J Phys Chem B; 2015 Feb; 119(8):3595-602. PubMed ID: 25642785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosensitive Control and Network Synchronization of Chemical Oscillators.
    Carballosa A; Gomez-Varela AI; Bao-Varela C; Flores-Arias MT; Muñuzuri AP
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation and perturbation of planar networks of chemical oscillators.
    Tompkins N; Cambria MC; Wang AL; Heymann M; Fraden S
    Chaos; 2015 Jun; 25(6):064611. PubMed ID: 26117136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering reaction-diffusion networks with properties of neural tissue.
    Litschel T; Norton MM; Tserunyan V; Fraden S
    Lab Chip; 2018 Feb; 18(5):714-722. PubMed ID: 29297916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing self-powered materials systems that perform pattern recognition.
    Fang Y; Yashin VV; Levitan SP; Balazs AC
    Chem Commun (Camb); 2017 Jul; 53(55):7692-7706. PubMed ID: 28630968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic perturbation of one of two identical chemical oscillators coupled via inhibition.
    Vanag VK; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066213. PubMed ID: 20866507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.