BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32078937)

  • 1. Monodisperse liquid foams via membrane foaming.
    Carballido L; Dabrowski ML; Dehli F; Koch L; Stubenrauch C
    J Colloid Interface Sci; 2020 May; 568():46-53. PubMed ID: 32078937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse polystyrene foams via polymerization of foamed emulsions: structure and mechanical properties.
    Elsing J; Stefanov T; Gilchrist MD; Stubenrauch C
    Phys Chem Chem Phys; 2017 Feb; 19(7):5477-5485. PubMed ID: 28165070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring and visualising pore openings in gelatin-based hydrogel foams.
    Dehli F; Southan A; Drenckhan W; Stubenrauch C
    J Colloid Interface Sci; 2021 Apr; 588():326-335. PubMed ID: 33422781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methacrylate-based polymer foams with controllable connectivity, pore shape, pore size and polydispersity.
    Dabrowski ML; Jenkins D; Cosgriff-Hernandez E; Stubenrauch C
    Phys Chem Chem Phys; 2019 Dec; 22(1):155-168. PubMed ID: 31793935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of foams by the combined effects of an insoluble gas species and gelation.
    Bey H; Wintzenrieth F; Ronsin O; Höhler R; Cohen-Addad S
    Soft Matter; 2017 Oct; 13(38):6816-6830. PubMed ID: 28825087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of Solid Foams with Controlled Polydispersity Using Microfluidics.
    Andrieux S; Drenckhan W; Stubenrauch C
    Langmuir; 2018 Jan; 34(4):1581-1590. PubMed ID: 29309162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of oil on aqueous foams: electrical conductivity of foamed emulsions.
    Yan YL; Shan C; Wang Y; Deng Q
    Chemphyschem; 2014 Oct; 15(14):3110-5. PubMed ID: 25056102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable liquid foams from a new polyfluorinated surfactant.
    Russo M; Amara Z; Fenneteau J; Chaumont-Olive P; Maimouni I; Tabeling P; Cossy J
    Chem Commun (Camb); 2020 May; 56(43):5807-5810. PubMed ID: 32324187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Microfluidics in the Production and Analysis of Food Foams.
    Deng B; de Ruiter J; Schroën K
    Foods; 2019 Oct; 8(10):. PubMed ID: 31614474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid foam templating - A route to tailor-made polymer foams.
    Andrieux S; Quell A; Stubenrauch C; Drenckhan W
    Adv Colloid Interface Sci; 2018 Jun; 256():276-290. PubMed ID: 29728156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation and polymerization of foamed 1,4-BDDMA-in-water emulsions.
    Dabrowski ML; Hamann M; Stubenrauch C
    RSC Adv; 2020 Feb; 10(15):8917-8926. PubMed ID: 35496563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics Mediated Production of Foams for Biomedical Applications.
    Maimouni I; Cejas CM; Cossy J; Tabeling P; Russo M
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures.
    Frazier SD; Srubar WV
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():467-73. PubMed ID: 26952448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary imbibition in open-cell monodisperse foams.
    Pitois O; Kaddami A; Langlois V
    J Colloid Interface Sci; 2020 Jul; 571():166-173. PubMed ID: 32199269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems.
    Shrestha LK; Aramaki K; Kato H; Takase Y; Kunieda H
    Langmuir; 2006 Sep; 22(20):8337-45. PubMed ID: 16981746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabricating scaffolds by microfluidics.
    Chung KY; Mishra NC; Wang CC; Lin FH; Lin KH
    Biomicrofluidics; 2009 Apr; 3(2):22403. PubMed ID: 19693338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Less is more: Unstable foams clean better than stable foams.
    Schad T; Preisig N; Blunk D; Piening H; Drenckhan W; Stubenrauch C
    J Colloid Interface Sci; 2021 May; 590():311-320. PubMed ID: 33548614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micrometric Monodisperse Solid Foams as Complete Photonic Bandgap Materials.
    Maimouni I; Morvaridi M; Russo M; Lui G; Morozov K; Cossy J; Florescu M; Labousse M; Tabeling P
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32061-32068. PubMed ID: 32530594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Well-controlled foam-based solid coatings.
    Mouquet A; Khidas Y; Saison T; Faou JY; Pitois O
    Soft Matter; 2019 Jun; 15(25):5084-5093. PubMed ID: 31184688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.