These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 32079042)
41. OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice. Jia H; Zhang S; Wang L; Yang Y; Zhang H; Cui H; Shao H; Xu G J Exp Bot; 2017 Nov; 68(18):5057-5068. PubMed ID: 29036625 [TBL] [Abstract][Full Text] [Related]
42. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Yang SY; Grønlund M; Jakobsen I; Grotemeyer MS; Rentsch D; Miyao A; Hirochika H; Kumar CS; Sundaresan V; Salamin N; Catausan S; Mattes N; Heuer S; Paszkowski U Plant Cell; 2012 Oct; 24(10):4236-51. PubMed ID: 23073651 [TBL] [Abstract][Full Text] [Related]
43. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Ferrol N; Azcón-Aguilar C; Pérez-Tienda J Plant Sci; 2019 Mar; 280():441-447. PubMed ID: 30824024 [TBL] [Abstract][Full Text] [Related]
44. Genome-Wide Analysis of the PHT Gene Family and Its Response to Mycorrhizal Symbiosis in Tomatoes under Phosphate Starvation Conditions. Rui W; Ma J; Wei N; Zhu X; Li Z Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373390 [TBL] [Abstract][Full Text] [Related]
45. A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Wegmüller S; Svistoonoff S; Reinhardt D; Stuurman J; Amrhein N; Bucher M Plant J; 2008 Jun; 54(6):1115-27. PubMed ID: 18315538 [TBL] [Abstract][Full Text] [Related]
46. Environmental Control of Phosphorus Acquisition: A Piece of the Molecular Framework Underlying Nutritional Homeostasis. Ueda Y; Sakuraba Y; Yanagisawa S Plant Cell Physiol; 2021 Sep; 62(4):573-581. PubMed ID: 33508134 [TBL] [Abstract][Full Text] [Related]
47. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis. Liao D; Chen X; Chen A; Wang H; Liu J; Liu J; Gu M; Sun S; Xu G Plant Cell Physiol; 2015 Apr; 56(4):674-87. PubMed ID: 25535196 [TBL] [Abstract][Full Text] [Related]
48. A putative high affinity phosphate transporter, CmPT1, enhances tolerance to Pi deficiency of chrysanthemum. Liu P; Chen S; Song A; Zhao S; Fang W; Guan Z; Liao Y; Jiang J; Chen F BMC Plant Biol; 2014 Jan; 14():18. PubMed ID: 24411021 [TBL] [Abstract][Full Text] [Related]
49. A novel plant-fungus symbiosis benefits the host without forming mycorrhizal structures. Kariman K; Barker SJ; Jost R; Finnegan PM; Tibbett M New Phytol; 2014 Mar; 201(4):1413-1422. PubMed ID: 24279681 [TBL] [Abstract][Full Text] [Related]
50. Diversity of a phosphate transporter gene among species and isolates of arbuscular mycorrhizal fungi. Giovannini L; Sbrana C; Avio L; Turrini A FEMS Microbiol Lett; 2020 Jan; 367(2):. PubMed ID: 32043113 [TBL] [Abstract][Full Text] [Related]
51. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Javot H; Pumplin N; Harrison MJ Plant Cell Environ; 2007 Mar; 30(3):310-322. PubMed ID: 17263776 [TBL] [Abstract][Full Text] [Related]
52. A phosphate transporter expressed in arbuscule-containing cells in potato. Rausch C; Daram P; Brunner S; Jansa J; Laloi M; Leggewie G; Amrhein N; Bucher M Nature; 2001 Nov; 414(6862):462-70. PubMed ID: 11719809 [TBL] [Abstract][Full Text] [Related]
53. Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Pumplin N; Zhang X; Noar RD; Harrison MJ Proc Natl Acad Sci U S A; 2012 Mar; 109(11):E665-72. PubMed ID: 22355114 [TBL] [Abstract][Full Text] [Related]
54. Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.). Duan J; Tian H; Drijber RA; Gao Y Plant Physiol Biochem; 2015 Nov; 96():199-208. PubMed ID: 26298806 [TBL] [Abstract][Full Text] [Related]
55. MicroRNA-mediated surveillance of phosphate transporters on the move. Liu TY; Lin WY; Huang TK; Chiou TJ Trends Plant Sci; 2014 Oct; 19(10):647-55. PubMed ID: 25001521 [TBL] [Abstract][Full Text] [Related]
56. Promoter-dependent expression of the fungal transporter HcPT1.1 under Pi shortage and its spatial localization in ectomycorrhiza. Garcia K; Haider MZ; Delteil A; Corratgé-Faillie C; Conéjero G; Tatry MV; Becquer A; Amenc L; Sentenac H; Plassard C; Zimmermann S Fungal Genet Biol; 2013; 58-59():53-61. PubMed ID: 23850603 [TBL] [Abstract][Full Text] [Related]
57. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Qin L; Zhao J; Tian J; Chen L; Sun Z; Guo Y; Lu X; Gu M; Xu G; Liao H Plant Physiol; 2012 Aug; 159(4):1634-43. PubMed ID: 22740613 [TBL] [Abstract][Full Text] [Related]
58. Increased phosphate transport of Arabidopsis thaliana Pht1;1 by site-directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions. Fontenot EB; Ditusa SF; Kato N; Olivier DM; Dale R; Lin WY; Chiou TJ; Macnaughtan MA; Smith AP Plant Cell Environ; 2015 Oct; 38(10):2012-22. PubMed ID: 25754174 [TBL] [Abstract][Full Text] [Related]
59. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Branscheid A; Sieh D; Pant BD; May P; Devers EA; Elkrog A; Schauser L; Scheible WR; Krajinski F Mol Plant Microbe Interact; 2010 Jul; 23(7):915-26. PubMed ID: 20521954 [TBL] [Abstract][Full Text] [Related]
60. Phosphate Suppression of Arbuscular Mycorrhizal Symbiosis Involves Gibberellic Acid Signaling. Nouri E; Surve R; Bapaume L; Stumpe M; Chen M; Zhang Y; Ruyter-Spira C; Bouwmeester H; Glauser G; Bruisson S; Reinhardt D Plant Cell Physiol; 2021 Oct; 62(6):959-970. PubMed ID: 34037236 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]