These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 32079095)
41. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana. Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003 [TBL] [Abstract][Full Text] [Related]
42. Tuning growth to the environmental demands. Rymen B; Sugimoto K Curr Opin Plant Biol; 2012 Dec; 15(6):683-90. PubMed ID: 22902170 [TBL] [Abstract][Full Text] [Related]
43. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. Riboni M; Robustelli Test A; Galbiati M; Tonelli C; Conti L J Exp Bot; 2016 Dec; 67(22):6309-6322. PubMed ID: 27733440 [TBL] [Abstract][Full Text] [Related]
44. Photoperiodic flowering: time measurement mechanisms in leaves. Song YH; Shim JS; Kinmonth-Schultz HA; Imaizumi T Annu Rev Plant Biol; 2015; 66():441-64. PubMed ID: 25534513 [TBL] [Abstract][Full Text] [Related]
45. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Hayama R; Agashe B; Luley E; King R; Coupland G Plant Cell; 2007 Oct; 19(10):2988-3000. PubMed ID: 17965272 [TBL] [Abstract][Full Text] [Related]
46. Identification and Analysis of Genes Involved in Auxin, Abscisic Acid, Gibberellin, and Brassinosteroid Metabolisms Under Drought Stress in Tender Shoots of Tea Plants. Li H; Teng RM; Liu JX; Yang RY; Yang YZ; Lin SJ; Han MH; Liu JY; Zhuang J DNA Cell Biol; 2019 Nov; 38(11):1292-1302. PubMed ID: 31560570 [TBL] [Abstract][Full Text] [Related]
47. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Gou J; Strauss SH; Tsai CJ; Fang K; Chen Y; Jiang X; Busov VB Plant Cell; 2010 Mar; 22(3):623-39. PubMed ID: 20354195 [TBL] [Abstract][Full Text] [Related]
48. The DELLA-CONSTANS Transcription Factor Cascade Integrates Gibberellic Acid and Photoperiod Signaling to Regulate Flowering. Wang H; Pan J; Li Y; Lou D; Hu Y; Yu D Plant Physiol; 2016 Sep; 172(1):479-88. PubMed ID: 27406167 [TBL] [Abstract][Full Text] [Related]
49. Molecular Genetic Understanding of Photoperiodic Regulation of Flowering Time in Luo X; Yin M; He Y Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008892 [TBL] [Abstract][Full Text] [Related]
50. Auxin: a master regulator in plant root development. Saini S; Sharma I; Kaur N; Pati PK Plant Cell Rep; 2013 Jun; 32(6):741-57. PubMed ID: 23553556 [TBL] [Abstract][Full Text] [Related]
51. SPL3/4/5 Integrate Developmental Aging and Photoperiodic Signals into the FT-FD Module in Arabidopsis Flowering. Jung JH; Lee HJ; Ryu JY; Park CM Mol Plant; 2016 Dec; 9(12):1647-1659. PubMed ID: 27815142 [TBL] [Abstract][Full Text] [Related]
52. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. Wang GL; Que F; Xu ZS; Wang F; Xiong AS BMC Plant Biol; 2015 Dec; 15():290. PubMed ID: 26667233 [TBL] [Abstract][Full Text] [Related]
53. Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus II: characterization of a microRNA implicated in the control of flowering time. Yamashino T; Yamawaki S; Hagui E; Ishida K; Ueoka-Nakanishi H; Nakamichi N; Mizuno T Biosci Biotechnol Biochem; 2013; 77(6):1179-85. PubMed ID: 23748785 [TBL] [Abstract][Full Text] [Related]
54. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. Agulló-Antón MÁ; Ferrández-Ayela A; Fernández-García N; Nicolás C; Albacete A; Pérez-Alfocea F; Sánchez-Bravo J; Pérez-Pérez JM; Acosta M Physiol Plant; 2014 Mar; 150(3):446-62. PubMed ID: 24117983 [TBL] [Abstract][Full Text] [Related]
55. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Song GQ; Walworth A; Zhao D; Jiang N; Hancock JF Plant Cell Rep; 2013 Nov; 32(11):1759-69. PubMed ID: 23907615 [TBL] [Abstract][Full Text] [Related]
56. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Riboni M; Galbiati M; Tonelli C; Conti L Plant Physiol; 2013 Jul; 162(3):1706-19. PubMed ID: 23719890 [TBL] [Abstract][Full Text] [Related]
57. Genome wide transcriptional profiling of acclimation to photoperiod in high-latitude accessions of Arabidopsis thaliana. Lewandowska-Sabat AM; Winge P; Fjellheim S; Dørum G; Bones AM; Rognli OA Plant Sci; 2012 Apr; 185-186():143-55. PubMed ID: 22325875 [TBL] [Abstract][Full Text] [Related]
58. Regulation of arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. Bu Z; Yu Y; Li Z; Liu Y; Jiang W; Huang Y; Dong AW PLoS Genet; 2014 Sep; 10(9):e1004617. PubMed ID: 25211338 [TBL] [Abstract][Full Text] [Related]
59. NADPH oxidases, essential players of hormone signalings in plant development and response to stresses. Sun LR; Zhao ZJ; Hao FS Plant Signal Behav; 2019; 14(11):1657343. PubMed ID: 31431139 [TBL] [Abstract][Full Text] [Related]
60. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Jung JH; Ju Y; Seo PJ; Lee JH; Park CM Plant J; 2012 Feb; 69(4):577-88. PubMed ID: 21988498 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]