These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32079221)

  • 1. A 3D Bioprinted Pseudo-Bone Drug Delivery Scaffold for Bone Tissue Engineering.
    Kondiah PJ; Kondiah PPD; Choonara YE; Marimuthu T; Pillay V
    Pharmaceutics; 2020 Feb; 12(2):. PubMed ID: 32079221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering.
    Pant S; Thomas S; Loganathan S; Valapa RB
    Int J Biol Macromol; 2022 Sep; 217():979-997. PubMed ID: 35908677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects.
    Shen M; Wang L; Gao Y; Feng L; Xu C; Li S; Wang X; Wu Y; Guo Y; Pei G
    Mater Today Bio; 2022 Dec; 16():100382. PubMed ID: 36033373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an injectable pseudo-bone thermo-gel for application in small bone fractures.
    Kondiah PJ; Choonara YE; Kondiah PPD; Kumar P; Marimuthu T; du Toit LC; Pillay V
    Int J Pharm; 2017 Mar; 520(1-2):39-48. PubMed ID: 28159682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications.
    Sithole MN; Kumar P; du Toit LC; Marimuthu T; Choonara YE; Pillay V
    J Biomed Mater Res A; 2018 May; 106(5):1311-1321. PubMed ID: 29316290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology.
    Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R
    Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging.
    Gao G; Yonezawa T; Hubbell K; Dai G; Cui X
    Biotechnol J; 2015 Oct; 10(10):1568-77. PubMed ID: 25641582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Culture of 3D bioprinted bone constructs requires an increased fluid dynamic stimulation.
    Mainardi VL; Rubert M; Sabato C; de Leeuw A; Arrigoni C; Dubini G; Candrian C; Müller R; Moretti M
    Acta Biomater; 2022 Nov; 153():374-385. PubMed ID: 36108964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects.
    Altunbek M; Afghah SF; Fallah A; Acar AA; Koc B
    ACS Appl Bio Mater; 2023 May; 6(5):1873-1885. PubMed ID: 37071829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite - Physical properties and biocompatibility.
    Wang Y; Liu C; Song T; Cao Z; Wang T
    Heliyon; 2024 Mar; 10(5):e26071. PubMed ID: 38468962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair.
    Liu X; Song S; Chen Z; Gao C; Li Y; Luo Y; Huang J; Zhang Z
    Acta Biomater; 2022 Oct; 151():148-162. PubMed ID: 36002129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A
    Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies.
    Yazdanpanah Z; Johnston JD; Cooper DML; Chen X
    Front Bioeng Biotechnol; 2022; 10():824156. PubMed ID: 35480972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D bioprinted hydrogel/polymer scaffold with factor delivery and mechanical support for growth plate injury repair.
    Fan M; Qiang L; Wang Y; Liu Y; Zhuang H; Guo R; Ben Y; Li Q; Zheng P
    Front Bioeng Biotechnol; 2023; 11():1210786. PubMed ID: 37324424
    [No Abstract]   [Full Text] [Related]  

  • 20. 3D Bioprinted Bacteriostatic Hyperelastic Bone Scaffold for Damage-Specific Bone Regeneration.
    Shokouhimehr M; Theus AS; Kamalakar A; Ning L; Cao C; Tomov ML; Kaiser JM; Goudy S; Willett NJ; Jang HW; LaRock CN; Hanna P; Lechtig A; Yousef M; Martins JDS; Nazarian A; Harris MB; Mahmoudi M; Serpooshan V
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33808295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.