These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A quantum wave-packet study of intersystem crossing effects in the O(3P2,1,0,1D2)+H2 reaction. Chu TS; Zhang X; Han KL J Chem Phys; 2005 Jun; 122(21):214301. PubMed ID: 15974732 [TBL] [Abstract][Full Text] [Related]
4. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics. Valero R; Truhlar DG J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756 [TBL] [Abstract][Full Text] [Related]
5. Theoretical Study on the Spectroscopic Observation of Intersystem Crossing between Watabe Y; Miyazaki T; Takayanagi T; Suzuki YI J Phys Chem A; 2019 Jul; 123(27):5734-5740. PubMed ID: 31194552 [TBL] [Abstract][Full Text] [Related]
6. Spin-inversion and spin-selection in the reactions FeO(+) + H2 and Fe(+) + N2O. Ard SG; Johnson RS; Melko JJ; Martinez O; Shuman NS; Ushakov VG; Guo H; Troe J; Viggiano AA Phys Chem Chem Phys; 2015 Aug; 17(30):19709-17. PubMed ID: 26129708 [TBL] [Abstract][Full Text] [Related]
7. Nonadiabatic quantum dynamics calculations of transition state spectroscopy of I + HI and I + DI reactions: the existence of long life vibrational bonding resonances. Takayanagi T Phys Chem Chem Phys; 2017 Nov; 19(43):29125-29133. PubMed ID: 29082990 [TBL] [Abstract][Full Text] [Related]
8. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site. Kaliakin DS; Zaari RR; Varganov SA J Phys Chem A; 2015 Feb; 119(6):1066-73. PubMed ID: 25603170 [TBL] [Abstract][Full Text] [Related]
9. Spin-vibronic quantum dynamics for ultrafast excited-state processes. Eng J; Gourlaouen C; Gindensperger E; Daniel C Acc Chem Res; 2015 Mar; 48(3):809-17. PubMed ID: 25647179 [TBL] [Abstract][Full Text] [Related]
10. Quantum wave-packet dynamics in spin-coupled vibronic states. Falge M; Engel V; Lein M; Vindel-Zandbergen P; Chang BY; Sola IR J Phys Chem A; 2012 Nov; 116(46):11427-33. PubMed ID: 22946899 [TBL] [Abstract][Full Text] [Related]
11. A quantum time-dependent wave-packet study of intersystem crossing effects in the O(3P(0, 1, 2)) + D2(v = 0, j = 0) reaction. Zhao J J Chem Phys; 2013 Apr; 138(13):134309. PubMed ID: 23574229 [TBL] [Abstract][Full Text] [Related]
13. Nonadiabatic Electronic Energy Transfer in the Chemical Oxygen-Iodine Laser: Powered by Derivative Coupling or Spin-Orbit Coupling? An F; Chen J; Hu X; Guo H; Xie D J Phys Chem Lett; 2020 Jun; 11(12):4768-4773. PubMed ID: 32407092 [TBL] [Abstract][Full Text] [Related]
14. Nonadiabatic quantum dynamics in O(3P)+H2→OH+H: a revisited study. Han B; Zheng Y J Comput Chem; 2011 Dec; 32(16):3520-5. PubMed ID: 21935969 [TBL] [Abstract][Full Text] [Related]
15. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics. Mahapatra S Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094 [TBL] [Abstract][Full Text] [Related]
16. Adiabatic states derived from a spin-coupled diabatic transformation: semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+. Valero R; Truhlar DG; Jasper AW J Phys Chem A; 2008 Jun; 112(25):5756-69. PubMed ID: 18529041 [TBL] [Abstract][Full Text] [Related]
17. Mixed quantum-classical study of nonadiabatic dynamics in the O(3P(2,1,0),1D2) + H2 reaction. Li B; Han KL J Phys Chem A; 2009 Sep; 113(38):10189-95. PubMed ID: 19722530 [TBL] [Abstract][Full Text] [Related]
18. Nonadiabatic energy transfer studies of O((1)D)+N(2)(X (1)Sigma(g) (+))-->O((3)P)+N(2)(X (1)Sigma(g) (+)) by time-dependent wave packet. Chu TS; Xie TX; Han KL J Chem Phys; 2004 Nov; 121(19):9352-60. PubMed ID: 15538854 [TBL] [Abstract][Full Text] [Related]
19. An improved model electronic Hamiltonian for potential energy surfaces and spin-orbit couplings of low-lying d-d states of [Fe(bpy)3]2+. Iuchi S; Koga N J Chem Phys; 2014 Jan; 140(2):024309. PubMed ID: 24437879 [TBL] [Abstract][Full Text] [Related]
20. Constructing polyatomic potential energy surfaces by interpolating diabatic Hamiltonian matrices with demonstration on green fluorescent protein chromophore. Park JW; Rhee YM J Chem Phys; 2014 Apr; 140(16):164112. PubMed ID: 24784258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]