These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32080186)

  • 1. Prevention of aspartimide formation during peptide synthesis using cyanosulfurylides as carboxylic acid-protecting groups.
    Neumann K; Farnung J; Baldauf S; Bode JW
    Nat Commun; 2020 Feb; 11(1):982. PubMed ID: 32080186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging Hydrazide as Protection for Carboxylic Acid: Suppression of Aspartimide Formation during Fmoc Solid-Phase Peptide Synthesis.
    Sato K; Uemura H; Narumi T; Mase N
    Org Lett; 2024 May; 26(21):4497-4501. PubMed ID: 38768369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid.
    Ruczyński J; Lewandowska B; Mucha P; Rekowski P
    J Pept Sci; 2008 Mar; 14(3):335-41. PubMed ID: 17975850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A backbone amide protecting group for overcoming difficult sequences and suppressing aspartimide formation.
    Abdel-Aal AB; Papageorgiou G; Raz R; Quibell M; Burlina F; Offer J
    J Pept Sci; 2016 May; 22(5):360-7. PubMed ID: 27086749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Asp-based lactam cyclic peptides using an amide-bonded diaminodiacid to prevent aspartimide formation.
    Li WJ; Chen JY; Zhu HX; Li YM; Xu Y
    Org Biomol Chem; 2024 May; 22(18):3584-3588. PubMed ID: 38623862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protecting Groups in Peptide Synthesis.
    Conda-Sheridan M; Krishnaiah M
    Methods Mol Biol; 2020; 2103():111-128. PubMed ID: 31879921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preventing aspartimide formation in Fmoc SPPS of Asp-Gly containing peptides--practical aspects of new trialkylcarbinol based protecting groups.
    Behrendt R; Huber S; White P
    J Pept Sci; 2016 Feb; 22(2):92-7. PubMed ID: 26751703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-mediated prevention of aspartimide formation in solid phase peptide synthesis.
    Michels T; Dölling R; Haberkorn U; Mier W
    Org Lett; 2012 Oct; 14(20):5218-21. PubMed ID: 23025410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha- and beta- aspartyl peptide ester formation via aspartimide ring opening.
    Stathopoulos P; Papas S; Kostidis S; Tsikaris V
    J Pept Sci; 2005 Oct; 11(10):658-64. PubMed ID: 15884102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New t-butyl based aspartate protecting groups preventing aspartimide formation in Fmoc SPPS.
    Behrendt R; Huber S; Martí R; White P
    J Pept Sci; 2015 Aug; 21(8):680-7. PubMed ID: 26077723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of peptide sequences related to thrombospondin: factors affecting aspartimide by-product formation.
    Cebrián J; Domingo V; Reig F
    J Pept Res; 2003 Dec; 62(6):238-44. PubMed ID: 14632926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of protecting groups for the beta-carboxylic group of aspartic acid that minimize base-catalyzed aspartimide formation.
    Karlström A; Undén A
    Int J Pept Protein Res; 1996 Oct; 48(4):305-11. PubMed ID: 8919050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of aspartimide formation: the effects of protecting groups, acid, base, temperature and time.
    Tam JP; Riemen MW; Merrifield RB
    Pept Res; 1988; 1(1):6-18. PubMed ID: 2980781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Fmoc solid-phase peptide synthesis.
    Behrendt R; White P; Offer J
    J Pept Sci; 2016 Jan; 22(1):4-27. PubMed ID: 26785684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM).
    Vanier GS
    Methods Mol Biol; 2013; 1047():235-49. PubMed ID: 23943491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decarboxylative Couplings for Late-Stage Peptide Modifications.
    Zhang MY; Malins LR
    Methods Mol Biol; 2020; 2103():275-285. PubMed ID: 31879933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aspartimide problem in Fmoc-based SPPS. Part I.
    Mergler M; Dick F; Sax B; Weiler P; Vorherr T
    J Pept Sci; 2003 Jan; 9(1):36-46. PubMed ID: 12587881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-assisted cleavage of Alloc and Allyl Ester protecting groups in solid phase peptide synthesis.
    Wilson KR; Sedberry S; Pescatore R; Vinton D; Love B; Ballard S; Wham BC; Hutchison SK; Williamson EJ
    J Pept Sci; 2016 Oct; 22(10):622-627. PubMed ID: 27501347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis.
    Palasek SA; Cox ZJ; Collins JM
    J Pept Sci; 2007 Mar; 13(3):143-8. PubMed ID: 17121420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aspartimide problem persists: Fluorenylmethyloxycarbonyl-solid-phase peptide synthesis (Fmoc-SPPS) chain termination due to formation of N-terminal piperazine-2,5-diones.
    Samson D; Rentsch D; Minuth M; Meier T; Loidl G
    J Pept Sci; 2019 Jul; 25(7):e3193. PubMed ID: 31309675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.