These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 32080200)

  • 1. Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency.
    Luciani A; Schumann A; Berquez M; Chen Z; Nieri D; Failli M; Debaix H; Festa BP; Tokonami N; Raimondi A; Cremonesi A; Carrella D; Forny P; Kölker S; Diomedi Camassei F; Diaz F; Moraes CT; Di Bernardo D; Baumgartner MR; Devuyst O
    Nat Commun; 2020 Feb; 11(1):970. PubMed ID: 32080200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylmalonyl acidemia: from mitochondrial metabolism to defective mitophagy and disease.
    Luciani A; Devuyst O
    Autophagy; 2020 Jun; 16(6):1159-1161. PubMed ID: 32316822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria, mitophagy, and metabolic disease: towards assembling the puzzle.
    Chen Z; Berquez M; Luciani A
    Cell Stress; 2020 May; 4(6):147-150. PubMed ID: 32548571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney.
    Zsengellér ZK; Aljinovic N; Teot LA; Korson M; Rodig N; Sloan JL; Venditti CP; Berry GT; Rosen S
    Pediatr Nephrol; 2014 Nov; 29(11):2139-46. PubMed ID: 24865477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tricarboxylic acid cycle enzyme activities in a mouse model of methylmalonic aciduria.
    Wongkittichote P; Cunningham G; Summar ML; Pumbo E; Forny P; Baumgartner MR; Chapman KA
    Mol Genet Metab; 2019 Dec; 128(4):444-451. PubMed ID: 31648943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia.
    Manoli I; Sysol JR; Epping MW; Li L; Wang C; Sloan JL; Pass A; Gagné J; Ktena YP; Li L; Trivedi NS; Ouattara B; Zerfas PM; Hoffmann V; Abu-Asab M; Tsokos MG; Kleiner DE; Garone C; Cusmano-Ozog K; Enns GM; Vernon HJ; Andersson HC; Grunewald S; Elkahloun AG; Girard CL; Schnermann J; DiMauro S; Andres-Mateos E; Vandenberghe LH; Chandler RJ; Venditti CP
    JCI Insight; 2018 Dec; 3(23):. PubMed ID: 30518688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic literature review and meta-analysis on the epidemiology of methylmalonic acidemia (MMA) with a focus on MMA caused by methylmalonyl-CoA mutase (mut) deficiency.
    Almási T; Guey LT; Lukacs C; Csetneki K; Vokó Z; Zelei T
    Orphanet J Rare Dis; 2019 Apr; 14(1):84. PubMed ID: 31023387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TAT-MTS-MCM fusion proteins reduce MMA levels and improve mitochondrial activity and liver function in MCM-deficient cells.
    Erlich-Hadad T; Hadad R; Feldman A; Greif H; Lictenstein M; Lorberboum-Galski H
    J Cell Mol Med; 2018 Mar; 22(3):1601-1613. PubMed ID: 29265583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenoviral-mediated correction of methylmalonyl-CoA mutase deficiency in murine fibroblasts and human hepatocytes.
    Chandler RJ; Tsai MS; Dorko K; Sloan J; Korson M; Freeman R; Strom S; Venditti CP
    BMC Med Genet; 2007 Apr; 8():24. PubMed ID: 17470278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and anaplerotic applications of in vitro models of propionic acidemia and methylmalonic acidemia using patient-derived primary hepatocytes.
    Collado MS; Armstrong AJ; Olson M; Hoang SA; Day N; Summar M; Chapman KA; Reardon J; Figler RA; Wamhoff BR
    Mol Genet Metab; 2020 Jul; 130(3):183-196. PubMed ID: 32451238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Novel Mutations and Methylmalonyl-CoA Mutase Levels in Thai Patients with Isolated Methylmalonic Acidemia.
    Sawangareetrakul P; Ketudat Cairns JR; Vatanavicharn N; Liammongkolkul S; Wasant P; Svasti J; Champattanachai V
    Biochem Genet; 2015 Dec; 53(11-12):310-8. PubMed ID: 26370686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-clinical efficacy and dosing of an AAV8 vector expressing human methylmalonyl-CoA mutase in a murine model of methylmalonic acidemia (MMA).
    Chandler RJ; Venditti CP
    Mol Genet Metab; 2012 Nov; 107(3):617-9. PubMed ID: 23046887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired Function of a Rare Mutation in the
    Dai S; Yang Y; Li Y; Liu H
    Genet Res (Camb); 2022; 2022():5611697. PubMed ID: 35919035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular and computational models reveal environmental and metabolic interactions in MMUT-type methylmalonic aciduria.
    Ramon C; Traversi F; Bürer C; Froese DS; Stelling J
    J Inherit Metab Dis; 2023 May; 46(3):421-435. PubMed ID: 36371683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel AAV-mediated genome editing therapy improves health and survival in a mouse model of methylmalonic acidemia.
    Zhang S; Bastille A; Gordo S; Ramesh N; Vora J; McCarthy E; Zhang X; Frank D; Ko CW; Wu C; Walsh N; Amarwani S; Liao J; Xiong Q; Drouin L; Hebben M; Chiang K; Chau BN
    PLoS One; 2022; 17(9):e0274774. PubMed ID: 36126056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-depth phenotyping reveals common and novel disease symptoms in a hemizygous knock-in mouse model (Mut-ko/ki) of mut-type methylmalonic aciduria.
    Lucienne M; Aguilar-Pimentel JA; Amarie OV; Becker L; Calzada-Wack J; da Silva-Buttkus P; Garrett L; Hölter SM; Mayer-Kuckuk P; Rathkolb B; Rozman J; Spielmann N; Treise I; Busch DH; Klopstock T; Schmidt-Weber C; Wolf E; Wurst W; Forny M; Mathis D; Fingerhut R; Froese DS; Gailus-Durner V; Fuchs H; de Angelis MH; Baumgartner MR
    Biochim Biophys Acta Mol Basis Dis; 2020 Mar; 1866(3):165622. PubMed ID: 31770620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial dysfunction in mut methylmalonic acidemia.
    Chandler RJ; Zerfas PM; Shanske S; Sloan J; Hoffmann V; DiMauro S; Venditti CP
    FASEB J; 2009 Apr; 23(4):1252-61. PubMed ID: 19088183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoterless, Nuclease-Free Genome Editing Confers a Growth Advantage for Corrected Hepatocytes in Mice With Methylmalonic Acidemia.
    Chandler RJ; Venturoni LE; Liao J; Hubbard BT; Schneller JL; Hoffmann V; Gordo S; Zang S; Ko CW; Chau N; Chiang K; Kay MA; Barzel A; Venditti CP
    Hepatology; 2021 Jun; 73(6):2223-2237. PubMed ID: 32976669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of transgenic mice containing an introduced stop codon on the human methylmalonyl-CoA mutase locus.
    Buck NE; Dashnow H; Pitt JJ; Wood LR; Peters HL
    PLoS One; 2012; 7(9):e44974. PubMed ID: 23024777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia.
    Manoli I; Sysol JR; Li L; Houillier P; Garone C; Wang C; Zerfas PM; Cusmano-Ozog K; Young S; Trivedi NS; Cheng J; Sloan JL; Chandler RJ; Abu-Asab M; Tsokos M; Elkahloun AG; Rosen S; Enns GM; Berry GT; Hoffmann V; DiMauro S; Schnermann J; Venditti CP
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13552-7. PubMed ID: 23898205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.