These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Gene delivery in adherent and suspension cells using the combined physical methods. Kardani K; Milani A; Bolhassani A Cytotechnology; 2022 Apr; 74(2):245-257. PubMed ID: 35464169 [TBL] [Abstract][Full Text] [Related]
9. Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. Haberl S; Kandušer M; Flisar K; Hodžić D; Bregar VB; Miklavčič D; Escoffre JM; Rols MP; Pavlin M J Gene Med; 2013 May; 15(5):169-81. PubMed ID: 23564663 [TBL] [Abstract][Full Text] [Related]
10. Efficient expression of foreign genes in CHO DHFR(-) cells by electroporation. Lin WZ; Lee SS; Cheung WT Biologicals; 2009 Oct; 37(5):277-81. PubMed ID: 19457681 [TBL] [Abstract][Full Text] [Related]
11. Gold nanoparticle-enhanced electroporation for leukemia cell transfection. Huang S; Zu Y; Wang S Methods Mol Biol; 2014; 1121():69-77. PubMed ID: 24510813 [TBL] [Abstract][Full Text] [Related]
12. Engineering high post-electroporation viabilities and transfection efficiencies for elongated cells on suspended nanofiber networks. Jacobs Iv EJ; Graybill PM; Jana A; Agashe A; Nain AS; Davalos RV Bioelectrochemistry; 2023 Aug; 152():108415. PubMed ID: 37011476 [TBL] [Abstract][Full Text] [Related]
13. Setting optimal parameters for in vitro electrotransfection of B16F1, SA1, LPB, SCK, L929 and CHO cells using predefined exponentially decaying electric pulses. Cegovnik U; Novaković S Bioelectrochemistry; 2004 Apr; 62(1):73-82. PubMed ID: 14990328 [TBL] [Abstract][Full Text] [Related]
14. Gold nanoparticles enhanced electroporation for mammalian cell transfection. Zu Y; Huang S; Liao WC; Lu Y; Wang S J Biomed Nanotechnol; 2014 Jun; 10(6):982-92. PubMed ID: 24749393 [TBL] [Abstract][Full Text] [Related]
15. Enhanced transfection of a bacterial plasmid into hybridoma cells by electroporation: application for the selection of hybrid hybridoma (quadroma) cell lines. Bos R; Nieuwenhuizen W Hybridoma; 1992 Feb; 11(1):41-51. PubMed ID: 1737639 [TBL] [Abstract][Full Text] [Related]
16. Optimization of an electroporation protocol using the K562 cell line as a model: role of cell cycle phase and cytoplasmic DNAses. Delgado-Cañedo A; Santos DG; Chies JA; Kvitko K; Nardi NB Cytotechnology; 2006 Jul; 51(3):141-8. PubMed ID: 19002884 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply. Wang HY; Lu C Biotechnol Bioeng; 2008 Jun; 100(3):579-86. PubMed ID: 18183631 [TBL] [Abstract][Full Text] [Related]
18. Optimization of piggyBac Transposon System Electrotransfection in Sheep Fibroblasts. Zhao D; Qin J; An J; Zhang H; Li J; Wang H; Du R; He Y Mol Biotechnol; 2023 Oct; 65(10):1585-1597. PubMed ID: 36705779 [TBL] [Abstract][Full Text] [Related]
19. Establishment of targeted mutagenesis in soybean protoplasts using CRISPR/Cas9 RNP delivery via electro-transfection. Subburaj S; Agapito-Tenfen SZ Front Plant Sci; 2023; 14():1255819. PubMed ID: 37841627 [TBL] [Abstract][Full Text] [Related]
20. Effects of buffer composition and plasmid toxicity on electroporation-based non-viral gene delivery in mammalian cells using bursts of nanosecond and microsecond pulses. Radzevičiūtė-Valčiukė E; Gečaitė J; Balevičiūtė A; Szewczyk A; Želvys A; Lekešytė B; Malyško-Ptašinskė V; Mickevičiūtė E; Malakauskaitė P; Kulbacka J; Novickij V Front Bioeng Biotechnol; 2024; 12():1430637. PubMed ID: 39050682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]