BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 3208081)

  • 1. Differential effects of aminopeptidase inhibitors on angiotensin-induced pressor responses.
    Sullivan MJ; Harding JW; Wright JW
    Brain Res; 1988 Jul; 456(2):249-53. PubMed ID: 3208081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracerebroventricularly infused [D-Arg1]angiotensin III, is superior to [D-Asp1]angiotensin II, as a pressor agent in rats.
    Wright JW; Roberts KA; Cook VI; Murray CE; Sardinia MF; Harding JW
    Brain Res; 1990 Apr; 514(1):5-10. PubMed ID: 2357530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding, degradation and pressor activity of angiotensins II and III after aminopeptidase inhibition with amastatin and bestatin.
    Abhold RH; Sullivan MJ; Wright JW; Harding JW
    J Pharmacol Exp Ther; 1987 Sep; 242(3):957-62. PubMed ID: 3656120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of aminopeptidase inhibitors on brain angiotensin metabolism and drinking in rats.
    Wright JW; Quirk WS; Hanesworth JM; Harding JW
    Brain Res; 1988 Feb; 441(1-2):215-20. PubMed ID: 3359232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressor responses to amastatin, bestatin and Plummer's inhibitors are suppressed by pretreatment with the angiotensin receptor antagonist sarthran.
    Batt CM; Klein EW; Harding JW; Wright JW
    Brain Res Bull; 1988 Nov; 21(5):731-5. PubMed ID: 3219604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of the aminopeptidase inhibitors amastatin and bestatin on angiotensin-evoked neuronal activity in rat brain.
    Harding JW; Felix D
    Brain Res; 1987 Oct; 424(2):299-304. PubMed ID: 3676828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amastatin and bestatin-induced dipsogenicity in the Sprague-Dawley rat.
    Quirk WS; Harding JW; Wright JW
    Brain Res Bull; 1987 Jul; 19(1):145-7. PubMed ID: 3651838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of aminopeptidase inhibition on the half-lives of [125I]angiotensins in the cerebroventricles of the rat.
    Dewey AL; Wright JW; Hanesworth JM; Harding JW
    Brain Res; 1988 May; 448(2):369-72. PubMed ID: 3378160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased blood pressure induced by central application of aminopeptidase inhibitors is angiotensinergic-dependent in normotensive and hypertensive rat strains.
    Jensen LL; Harding JW; Wright JW
    Brain Res; 1989 Jun; 490(1):48-55. PubMed ID: 2758329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function analyses of brain angiotensin control of pressor action in rats.
    Wright JW; Jensen LL; Roberts KA; Sardinia MF; Harding JW
    Am J Physiol; 1989 Dec; 257(6 Pt 2):R1551-7. PubMed ID: 2604011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heightened pressor effect and dipsogenicity to intracerebroventricularly applied angiotensin II and III in spontaneously hypertensive rats.
    Wright JW; Sullivan MJ; Quirk WS; Batt CM; Harding JW
    J Hypertens Suppl; 1986 Dec; 4(6):S408-11. PubMed ID: 3475426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain angiotensin: critical role in the ongoing regulation of body fluid homeostasis and cardiovascular function.
    Harding JW; Jensen LL; Quirk WS; Dewey AL; Wright JW
    Peptides; 1989; 10(2):261-4. PubMed ID: 2755868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of peptidase inhibition on angiotensin receptor agonist and antagonist potency in rabbit isolated thoracic aorta.
    Robertson MJ; Cunoosamy MP; Clark KL
    Br J Pharmacol; 1992 May; 106(1):166-72. PubMed ID: 1354540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracerebroventricularly applied peptidase inhibitors increase endogenous angiotensin levels.
    Batt CM; Jensen LL; Hanesworth JM; Harding JW; Wright JW
    Brain Res; 1990 Oct; 529(1-2):126-30. PubMed ID: 2282487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drinking to intracerebroventricularly infused angiotensin II, III, and IV in the SHR.
    Wright JW; Roberts KA; Harding JW
    Peptides; 1988; 9(5):979-84. PubMed ID: 3244565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hypothalamic-angiotensin system: location and functional considerations.
    Felix D; Harding JW; Imboden H
    Clin Exp Hypertens A; 1988; 10 Suppl 1():45-62. PubMed ID: 3243007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heightened blood pressure and drinking responsiveness to intracerebroventricularly applied angiotensins in the spontaneously hypertensive rat.
    Wright JW; Sullivan MJ; Quirk WS; Batt CM; Harding JW
    Brain Res; 1987 Sep; 420(2):289-94. PubMed ID: 3676761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release.
    Zini S; Fournie-Zaluski MC; Chauvel E; Roques BP; Corvol P; Llorens-Cortes C
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11968-73. PubMed ID: 8876246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of aminopeptidase activity in the regulation of the pressor activity of circulating angiotensins.
    Ahmad S; Ward PE
    J Pharmacol Exp Ther; 1990 Feb; 252(2):643-50. PubMed ID: 1968973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central pressor actions of aminopeptidase-resistant angiotensin II analogs: challenging the angiotensin III hypothesis.
    Kokje RJ; Wilson WL; Brown TE; Karamyan VT; Wright JW; Speth RC
    Hypertension; 2007 Jun; 49(6):1328-35. PubMed ID: 17470719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.