These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 32080946)
1. Coagulation of TiO Ramirez Arenas L; Ramseier Gentile S; Zimmermann S; Stoll S Water Environ Res; 2020 Aug; 92(8):1184-1194. PubMed ID: 32080946 [TBL] [Abstract][Full Text] [Related]
2. Impact of CeO Li X; He E; Xia B; Van Gestel CAM; Peijnenburg WJGM; Cao X; Qiu H Water Res; 2020 Nov; 186():116324. PubMed ID: 32871291 [TBL] [Abstract][Full Text] [Related]
3. Removal of titanium dioxide nanoparticles by coagulation: effects of coagulants, typical ions, alkalinity and natural organic matters. Wang HT; Ye YY; Qi J; Li FT; Tang YL Water Sci Technol; 2013; 68(5):1137-43. PubMed ID: 24037166 [TBL] [Abstract][Full Text] [Related]
4. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters. Wang J; Zhao X; Wu A; Tang Z; Niu L; Wu F; Wang F; Zhao T; Fu Z Environ Pollut; 2021 Jan; 268(Pt A):114240. PubMed ID: 33152633 [TBL] [Abstract][Full Text] [Related]
5. Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: Structural characterization and theoretical calculation. Gong Y; Bai Y; Zhao D; Wang Q Water Res; 2022 Jan; 208():117884. PubMed ID: 34837810 [TBL] [Abstract][Full Text] [Related]
6. The effect of TiO Serrão Sousa V; Corniciuc C; Ribau Teixeira M Water Res; 2017 Feb; 109():1-12. PubMed ID: 27865169 [TBL] [Abstract][Full Text] [Related]
7. Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant. Ramirez Arenas L; Ramseier Gentile S; Zimmermann S; Stoll S Sci Total Environ; 2022 Mar; 813():152623. PubMed ID: 34963580 [TBL] [Abstract][Full Text] [Related]
8. Comparative ecotoxicity of polystyrene nanoparticles in natural seawater and reconstituted seawater using the rotifer Brachionus plicatilis. Manfra L; Rotini A; Bergami E; Grassi G; Faleri C; Corsi I Ecotoxicol Environ Saf; 2017 Nov; 145():557-563. PubMed ID: 28800530 [TBL] [Abstract][Full Text] [Related]
9. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes. Yu S; Shen M; Li S; Fu Y; Zhang D; Liu H; Liu J Environ Pollut; 2019 Dec; 255(Pt 2):113302. PubMed ID: 31597113 [TBL] [Abstract][Full Text] [Related]
10. Differential aggregation of polystyrene and titanium dioxide nanoparticles under various salinity conditions and against multiple proteins types. Avellán-Llaguno RD; Zhang X; Zhao P; Velez A; Cruz M; Kikuchi J; Dong S; Huang Q Environ Sci Pollut Res Int; 2022 Oct; 29(49):74173-74184. PubMed ID: 35644000 [TBL] [Abstract][Full Text] [Related]
11. The suitability and mechanism of polyaluminum-titanium chloride composite coagulant (PATC) for polystyrene microplastic removal: Structural characterization and theoretical calculation. Liu B; Gao Y; Yue Q; Guo K; Gao B Water Res; 2023 Apr; 232():119690. PubMed ID: 36758354 [TBL] [Abstract][Full Text] [Related]
12. Role of pH and ionic strength in the aggregation of TiO Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037 [TBL] [Abstract][Full Text] [Related]
13. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Saavedra J; Stoll S; Slaveykova VI Environ Pollut; 2019 Sep; 252(Pt A):715-722. PubMed ID: 31185361 [TBL] [Abstract][Full Text] [Related]
14. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Wang H; Dong YN; Zhu M; Li X; Keller AA; Wang T; Li F Water Res; 2015 Sep; 80():130-8. PubMed ID: 26001279 [TBL] [Abstract][Full Text] [Related]
15. Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata. Bellingeri A; Bergami E; Grassi G; Faleri C; Redondo-Hasselerharm P; Koelmans AA; Corsi I Aquat Toxicol; 2019 May; 210():179-187. PubMed ID: 30870664 [TBL] [Abstract][Full Text] [Related]
16. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Bergami E; Pugnalini S; Vannuccini ML; Manfra L; Faleri C; Savorelli F; Dawson KA; Corsi I Aquat Toxicol; 2017 Aug; 189():159-169. PubMed ID: 28644993 [TBL] [Abstract][Full Text] [Related]
17. Effects of phosphate on the dispersion stability and coagulation/flocculation/sedimentation removal efficiency of anatase nanoparticles. Liu F; Zhang C; Zhao T; Zu Y; Wu X; Li B; Xing X; Niu J; Chen X; Qin C Chemosphere; 2019 Jun; 224():580-587. PubMed ID: 30844589 [TBL] [Abstract][Full Text] [Related]
18. Fate of nanoparticles during alum and ferric coagulation monitored using single particle ICP-MS. Donovan AR; Adams CD; Ma Y; Stephan C; Eichholz T; Shi H Chemosphere; 2018 Mar; 195():531-541. PubMed ID: 29277033 [TBL] [Abstract][Full Text] [Related]
19. Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters. Li L; Sillanpää M; Risto M Environ Pollut; 2016 Dec; 219():132-138. PubMed ID: 27814528 [TBL] [Abstract][Full Text] [Related]
20. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Cai L; Hu L; Shi H; Ye J; Zhang Y; Kim H Chemosphere; 2018 Apr; 197():142-151. PubMed ID: 29348047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]