BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 32081326)

  • 1. Assessments on emergy and greenhouse gas emissions of internal combustion engine automobiles and electric automobiles in the USA.
    Jing R; Yuan C; Rezaei H; Qian J; Zhang Z
    J Environ Sci (China); 2020 Apr; 90():297-309. PubMed ID: 32081326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China.
    Yu Y; Xu H; Cheng J; Wan F; Ju L; Liu Q; Liu J
    Sci Total Environ; 2022 Sep; 837():155626. PubMed ID: 35504393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective.
    Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J
    Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional Heterogeneity in the Emissions Benefits of Electrified and Lightweighted Light-Duty Vehicles.
    Wu D; Guo F; Field FR; De Kleine RD; Kim HC; Wallington TJ; Kirchain RE
    Environ Sci Technol; 2019 Sep; 53(18):10560-10570. PubMed ID: 31336049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
    Guo Y; Tian J; Zang N; Gao Y; Chen L
    Environ Sci Technol; 2018 Jul; 52(14):7754-7762. PubMed ID: 29902379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis.
    Zheng Y; Li S; Xu S
    PLoS One; 2019; 14(9):e0222448. PubMed ID: 31525217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study.
    Da C; Gu X; Lu C; Hua R; Chang X; Cheng Y; Qian F; Wang Y
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):76286-76297. PubMed ID: 35668254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level.
    Huo H; Zhang Q; Liu F; He K
    Environ Sci Technol; 2013 Feb; 47(3):1711-8. PubMed ID: 23276251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of shared electric bicycle on greenhouse gas emissions in China.
    Zhu Z; Lu C
    Sci Total Environ; 2023 Feb; 860():160546. PubMed ID: 36455739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-Benefits Analysis of Buildings Based on Different Renewal Strategies: The Emergy-Lca Approach.
    Cui W; Hong J; Liu G; Li K; Huang Y; Zhang L
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33445634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the European Electric-Mobility Transition: Emissions from Electric Vehicle Manufacturing and Use in Relation to the EU Greenhouse Gas Emission Targets.
    Tang C; Tukker A; Sprecher B; Mogollón JM
    Environ Sci Technol; 2023 Jan; 57(1):44-52. PubMed ID: 36574507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of greenhouse gas emissions of typical sewage sludge incineration treatment route based on two case studies in China.
    Yang H; Guo Y; Fang N; Dong B
    Environ Res; 2023 Aug; 231(Pt 1):115959. PubMed ID: 37105292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of mobility options using wood based fuels--comparison of selected environmental effects and costs.
    Weinberg J; Kaltschmitt M
    Bioresour Technol; 2013 Dec; 150():420-8. PubMed ID: 24012134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inventory of main greenhouse gas emissions from energy sector in Palestine.
    Qureitem G; Al-Khatib IA; Anayah F
    Environ Monit Assess; 2019 Dec; 192(1):63. PubMed ID: 31867682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling the greenhouse gas emissions of drinking water treatment plant throughout the construction and operation stages based on life cycle assessment.
    Zhang P; Ma B; Zheng G; Li F; Zhang W; Gu J; Liu Z; Li K; Wang H
    Ecotoxicol Environ Saf; 2024 Mar; 272():116043. PubMed ID: 38295736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.
    Kim HC; Wallington TJ; Arsenault R; Bae C; Ahn S; Lee J
    Environ Sci Technol; 2016 Jul; 50(14):7715-22. PubMed ID: 27303957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization.
    Kim HC; Wallington TJ
    Environ Sci Technol; 2013 Jun; 47(12):6089-97. PubMed ID: 23668335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.