These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32081338)

  • 21. Optimised photocatalytic degradation of a mixture of azo dyes using a TiO(2)/H(2)O(2)/UV process.
    Palácio SM; Espinoza-Quiñones FR; Módenes AN; Manenti DR; Oliveira CC; Garcia JC
    Water Sci Technol; 2012; 65(8):1392-8. PubMed ID: 22466584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strategies for ameliorating the photodegradation efficiency of Mn-doped CdAl
    Rajesh G; Senthil Kumar P; Akilandeswari S; Rangasamy G; Lohita S; Uma Shankar V; Ramya M; Nirmala K; Thirumalai K
    Chemosphere; 2023 Apr; 321():138069. PubMed ID: 36764620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging adsorptive removal of azo dye by metal-organic frameworks.
    Ayati A; Shahrak MN; Tanhaei B; Sillanpää M
    Chemosphere; 2016 Oct; 160():30-44. PubMed ID: 27355417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3.
    Hua L; Ma H; Zhang L
    Chemosphere; 2013 Jan; 90(2):143-9. PubMed ID: 22795071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ozonation of azo dye in a semi-batch reactor: a determination of the molecular and radical contributions.
    López-López A; Pic JS; Debellefontaine H
    Chemosphere; 2007 Feb; 66(11):2120-6. PubMed ID: 17166557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli.
    Cerboneschi M; Corsi M; Bianchini R; Bonanni M; Tegli S
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8235-45. PubMed ID: 26062529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocatalytic decolorisation and mineralisation of orange dyes on immobilised titanium dioxide nanoparticles.
    Khataee AR; Pons MN; Zahraa O
    Water Sci Technol; 2010; 62(5):1112-20. PubMed ID: 20818053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photostability of organic red food dyes.
    Boyles C; Sobeck SJS
    Food Chem; 2020 Jun; 315():126249. PubMed ID: 32000082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes.
    Ji Y; Yang Y; Zhou L; Wang L; Lu J; Ferronato C; Chovelon JM
    Water Res; 2018 Apr; 133():299-309. PubMed ID: 29407711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photolysis mechanism of eleven insecticides under simulated sunlight irradiation: Kinetics, pathway and QSAR.
    Wang J; Zhang X; Fan L; Su L; Zhao Y
    Chemosphere; 2023 Sep; 334():138968. PubMed ID: 37211161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant.
    Thennarasu G; Sivasamy A
    Ecotoxicol Environ Saf; 2016 Dec; 134(Pt 2):412-420. PubMed ID: 26560433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae.
    Corso CR; Almeida EJ; Santos GC; Morão LG; Fabris GS; Mitter EK
    Water Sci Technol; 2012; 65(8):1490-5. PubMed ID: 22466598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UV-photodegradation of desipramine: Impact of concentration, pH and temperature on formation of products including their biodegradability and toxicity.
    Khaleel NDH; Mahmoud WMM; Olsson O; Kümmerer K
    Sci Total Environ; 2016 Oct; 566-567():826-840. PubMed ID: 27254290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship of chemical structures of textile dyes on the pre-adaptation medium and the potentialities of their biodegradation by Phanerochaete chrysosporium.
    Martins MA; Queiroz MJ; Silvestre AJ; Lima N
    Res Microbiol; 2002; 153(6):361-8. PubMed ID: 12234010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Total mineralization of mixtures of Tartrazine, Ponceau SS and Direct Blue 71 azo dyes by solar photoelectro-Fenton in pre-pilot plant.
    Dos Santos AJ; Sirés I; Martínez-Huitle CA; Brillas E
    Chemosphere; 2018 Nov; 210():1137-1144. PubMed ID: 30208539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of cooperative hydrogen bonding in azo-hydrazone tautomerism of azo dyes.
    Ozen AS; Doruker P; Aviyente V
    J Phys Chem A; 2007 Dec; 111(51):13506-14. PubMed ID: 18052263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure.
    Suzuki T; Timofei S; Kurunczi L; Dietze U; Schüürmann G
    Chemosphere; 2001 Oct; 45(1):1-9. PubMed ID: 11572582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps.
    Zainal Z; Hui LK; Hussein MZ; Taufiq-Yap YH; Abdullah AH; Ramli I
    J Hazard Mater; 2005 Oct; 125(1-3):113-20. PubMed ID: 15996813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relative predominance of azo and hydrazone tautomers of 4-carboxyl-2,6-dinitrophenylazohydroxynaphthalenes in binary solvent mixtures.
    Adegoke OA
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):504-10. PubMed ID: 21943714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photodegradation of gallic acid under UV irradiation: insights regarding the pH effect on direct photolysis and the ROS oxidation-sensitized process of DOM.
    Du Y; Chen H; Zhang Y; Chang Y
    Chemosphere; 2014 Mar; 99():254-60. PubMed ID: 24290297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.