These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32081587)

  • 41. A weakened interface in the P182L variant of HSP27 associated with severe Charcot-Marie-Tooth neuropathy causes aberrant binding to interacting proteins.
    Alderson TR; Adriaenssens E; Asselbergh B; Pritišanac I; Van Lent J; Gastall HY; Wälti MA; Louis JM; Timmerman V; Baldwin AJ; Lp Benesch J
    EMBO J; 2021 Apr; 40(8):e103811. PubMed ID: 33644875
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oligomerization and chaperone-like activity of Drosophila melanogaster small heat shock protein DmHsp27 and three arginine mutants in the alpha-crystallin domain.
    Moutaoufik MT; Morrow G; Maaroufi H; Férard C; Finet S; Tanguay RM
    Cell Stress Chaperones; 2017 Jul; 22(4):455-466. PubMed ID: 27933579
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity.
    Basha E; Friedrich KL; Vierling E
    J Biol Chem; 2006 Dec; 281(52):39943-52. PubMed ID: 17090542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural and functional roles for beta-strand 7 in the alpha-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana.
    Sun Y; Bojikova-Fournier S; MacRae TH
    FEBS J; 2006 Mar; 273(5):1020-34. PubMed ID: 16478475
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin.
    Mainz A; Bardiaux B; Kuppler F; Multhaup G; Felli IC; Pierattelli R; Reif B
    J Biol Chem; 2012 Jan; 287(2):1128-38. PubMed ID: 22090033
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The chaperone HSPB1 prepares protein aggregates for resolubilization by HSP70.
    Gonçalves CC; Sharon I; Schmeing TM; Ramos CHI; Young JC
    Sci Rep; 2021 Aug; 11(1):17139. PubMed ID: 34429462
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster.
    Morrow G; Heikkila JJ; Tanguay RM
    Cell Stress Chaperones; 2006; 11(1):51-60. PubMed ID: 16572729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A model for heterooligomer formation in the heat shock response of Escherichia coli.
    Healy EF
    Biochem Biophys Res Commun; 2012 Apr; 420(3):639-43. PubMed ID: 22450329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection of key sites of dimer dissociation and unfolding initiation during activation of acid-stress chaperone HdeA at low pH.
    Widjaja MA; Gomez JS; Benson JM; Crowhurst KA
    Biochim Biophys Acta Proteins Proteom; 2021 Feb; 1869(2):140576. PubMed ID: 33253897
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies.
    Haley DA; Bova MP; Huang QL; Mchaourab HS; Stewart PL
    J Mol Biol; 2000 Apr; 298(2):261-72. PubMed ID: 10764595
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The activation mechanism of Hsp26 does not require dissociation of the oligomer.
    Franzmann TM; Wühr M; Richter K; Walter S; Buchner J
    J Mol Biol; 2005 Jul; 350(5):1083-93. PubMed ID: 15967461
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dimer structure as a minimum cooperative subunit of small heat-shock proteins.
    Dudich IV; Zav'yalov VP; Pfeil W; Gaestel M; Zav'yalova GA; Denesyuk AI; Korpela T
    Biochim Biophys Acta; 1995 Dec; 1253(2):163-8. PubMed ID: 8519797
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dodecameric structure of a small heat shock protein from Mycobacterium marinum M.
    Bhandari S; Biswas S; Chaudhary A; Dutta S; Suguna K
    Proteins; 2019 May; 87(5):365-379. PubMed ID: 30632633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry.
    Cheng G; Basha E; Wysocki VH; Vierling E
    J Biol Chem; 2008 Sep; 283(39):26634-42. PubMed ID: 18621732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-association and chaperone activity of Hsp27 are thermally activated.
    Lelj-Garolla B; Mauk AG
    J Biol Chem; 2006 Mar; 281(12):8169-74. PubMed ID: 16436384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays.
    Lentze N; Narberhaus F
    Biochem Biophys Res Commun; 2004 Dec; 325(2):401-7. PubMed ID: 15530406
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins.
    Stromer T; Fischer E; Richter K; Haslbeck M; Buchner J
    J Biol Chem; 2004 Mar; 279(12):11222-8. PubMed ID: 14722093
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heat causes oligomeric disassembly and increases the chaperone activity of small heat shock proteins from sugarcane.
    Tiroli-Cepeda AO; Ramos CH
    Plant Physiol Biochem; 2010; 48(2-3):108-16. PubMed ID: 20137963
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity.
    Chowdary TK; Raman B; Ramakrishna T; Rao CM
    Biochem J; 2004 Jul; 381(Pt 2):379-87. PubMed ID: 15030316
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple oligomeric structures of a bacterial small heat shock protein.
    Mani N; Bhandari S; Moreno R; Hu L; Prasad BVV; Suguna K
    Sci Rep; 2016 Apr; 6():24019. PubMed ID: 27053150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.