BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32081674)

  • 1. A starting kit for training and establishing in vivo electrophysiology, intracranial pharmacology, and optogenetics.
    Eriksson D; Schneck M; Schneider A; Coulon P; Diester I
    J Neurosci Methods; 2020 Apr; 336():108636. PubMed ID: 32081674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HOPE: Hybrid-Drive Combining Optogenetics, Pharmacology and Electrophysiology.
    Delcasso S; Denagamage S; Britton Z; Graybiel AM
    Front Neural Circuits; 2018; 12():41. PubMed ID: 29872379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A drivable optrode for use in chronic electrophysiology and optogenetic experiments.
    Stocke SK; Samuelsen CL
    J Neurosci Methods; 2021 Jan; 348():108979. PubMed ID: 33096153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-vivo optogenetics and pharmacology in deep intracellular recordings.
    Katz Y; Sokoletsky M; Lampl I
    J Neurosci Methods; 2019 Sep; 325():108324. PubMed ID: 31288037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology.
    Brosch M; Vlasenko A; Ohl FW; Lippert MT
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896
    [No Abstract]   [Full Text] [Related]  

  • 6. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile and modular tetrode-based device for single-unit recordings in rodent ex vivo and in vivo acute preparations.
    Machado F; Sousa N; Monteiro P; Jacinto L
    J Neurosci Methods; 2020 Jul; 341():108755. PubMed ID: 32417534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
    van Opbergen CJM; Koopman CD; Kok BJM; Knöpfel T; Renninger SL; Orger MB; Vos MA; van Veen TAB; Bakkers J; de Boer TP
    Theranostics; 2018; 8(17):4750-4764. PubMed ID: 30279735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-density optrodes for multi-scale electrophysiology and optogenetic stimulation.
    Chamanzar M; Borysov M; Maharbiz MM; Blanche TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6838-41. PubMed ID: 25571567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single or Double Patch-Clamp Recordings In Ex Vivo Slice Preparation: Functional Connectivity, Synapse Dynamics, and Optogenetics.
    Simonnet J; Richevaux L; Fricker D
    Methods Mol Biol; 2021; 2188():285-309. PubMed ID: 33119858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetics in Freely Moving Mammals: Dopamine and Reward.
    Zhang F; Tsai HC; Airan RD; Stuber GD; Adamantidis AR; de Lecea L; Bonci A; Deisseroth K
    Cold Spring Harb Protoc; 2015 Aug; 2015(8):715-24. PubMed ID: 26240415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurophysiological Assessment of Huntington's Disease Model Mice.
    Donzis EJ; Holley SM; Cepeda C; Levine MS
    Methods Mol Biol; 2018; 1780():163-177. PubMed ID: 29856019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optrodes for combined optogenetics and electrophysiology in live animals.
    Dufour S; De Koninck Y
    Neurophotonics; 2015 Jul; 2(3):031205. PubMed ID: 26158014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisite Electrophysiology Recordings in Mice to Study Cross-Regional Communication During Anxiety.
    Harris AZ; Golder D; Likhtik E
    Curr Protoc Neurosci; 2017 Jul; 80():8.40.1-8.40.21. PubMed ID: 28678397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracranial Injection of an Optogenetics Viral Vector Followed by Optical Cannula Implantation for Neural Stimulation in Rat Brain Cortex.
    Pawela C; DeYoe E; Pashaie R
    Methods Mol Biol; 2016; 1408():227-41. PubMed ID: 26965126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic brain interfaces.
    Pashaie R; Anikeeva P; Lee JH; Prakash R; Yizhar O; Prigge M; Chander D; Richner TJ; Williams J
    IEEE Rev Biomed Eng; 2014; 7():3-30. PubMed ID: 24802525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Head-mounted central venous access during optical recordings and manipulations of neural activity in mice.
    Liu C; Freeman DJ; Lammel S
    Nat Protoc; 2024 Mar; 19(3):960-983. PubMed ID: 38057625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coming full circle: In vivo Veritas, or expanding the neuroscience frontier.
    Khiroug L; Verkhratsky A
    Cell Calcium; 2021 Sep; 98():102452. PubMed ID: 34399234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal observations using simultaneous fMRI, multiple channel electrophysiology recording, and chemical microiontophoresis in the rat brain.
    Jaime S; Cavazos JE; Yang Y; Lu H
    J Neurosci Methods; 2018 Aug; 306():68-76. PubMed ID: 29778509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.