These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32082146)

  • 1. Deep Learning Based Drug Metabolites Prediction.
    Wang D; Liu W; Shen Z; Jiang L; Wang J; Li S; Li H
    Front Pharmacol; 2019; 10():1586. PubMed ID: 32082146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites.
    Ridder L; Wagener M
    ChemMedChem; 2008 May; 3(5):821-32. PubMed ID: 18311745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RD-Metabolizer: an integrated and reaction types extensive approach to predict metabolic sites and metabolites of drug-like molecules.
    Meng J; Li S; Liu X; Zheng M; Li H
    Chem Cent J; 2017 Jul; 11(1):65. PubMed ID: 29086838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification.
    Baylon JL; Cilfone NA; Gulcher JR; Chittenden TW
    J Chem Inf Model; 2019 Feb; 59(2):673-688. PubMed ID: 30642173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of drug metabolites using neural machine translation.
    Litsa EE; Das P; Kavraki LE
    Chem Sci; 2020 Sep; 11(47):12777-12788. PubMed ID: 34094473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Enables Accurate Prediction of Quinone Formation during Drug Metabolism.
    Sandhu H; Garg P
    Chem Res Toxicol; 2023 Dec; 36(12):1876-1890. PubMed ID: 37885227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism.
    de Bruyn Kops C; Stork C; Šícho M; Kochev N; Svozil D; Jeliazkova N; Kirchmair J
    Front Chem; 2019; 7():402. PubMed ID: 31249827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational prediction of the metabolites of agrochemicals formed in rats.
    Scholz VA; Stork C; Frericks M; Kirchmair J
    Sci Total Environ; 2023 Oct; 895():165039. PubMed ID: 37355108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM.
    Qian F; Chen L; Li J; Ding C; Chen X; Wang J
    Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31212880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Metabolic Rainbow: Deep Learning Phase I Metabolism in Five Colors.
    Dang NL; Matlock MK; Hughes TB; Swamidass SJ
    J Chem Inf Model; 2020 Mar; 60(3):1146-1164. PubMed ID: 32040319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of Data on Parent Compounds and Their Metabolites from Texts of Scientific Abstracts.
    Tarasova OA; Biziukova NY; Rudik AV; Dmitriev AV; Filimonov DA; Poroikov VV
    J Chem Inf Model; 2021 Apr; 61(4):1683-1690. PubMed ID: 33724829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting anatomic therapeutic chemical classification codes using tiered learning.
    Olson T; Singh R
    BMC Bioinformatics; 2017 Jun; 18(Suppl 8):266. PubMed ID: 28617230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CAPi: Computational Model for Apicoplast Inhibitors Prediction Against Plasmodium Parasite.
    Dixit S; Singla D
    Curr Comput Aided Drug Des; 2017 Nov; 13(4):303-310. PubMed ID: 28260517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y; Li W; Du T; Hong Z; Lin J
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties.
    Gupta RR; Gifford EM; Liston T; Waller CL; Hohman M; Bunin BA; Ekins S
    Drug Metab Dispos; 2010 Nov; 38(11):2083-90. PubMed ID: 20693417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based transcriptome data classification for drug-target interaction prediction.
    Xie L; He S; Song X; Bo X; Zhang Z
    BMC Genomics; 2018 Sep; 19(Suppl 7):667. PubMed ID: 30255785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.
    Zong N; Wong RSN; Ngo V
    Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning genome-mining strategy for biosynthetic gene cluster prediction.
    Hannigan GD; Prihoda D; Palicka A; Soukup J; Klempir O; Rampula L; Durcak J; Wurst M; Kotowski J; Chang D; Wang R; Piizzi G; Temesi G; Hazuda DJ; Woelk CH; Bitton DA
    Nucleic Acids Res; 2019 Oct; 47(18):e110. PubMed ID: 31400112
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.