These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 32082285)
1. Enrichment of Anaerobic Syngas-Converting Communities and Isolation of a Novel Carboxydotrophic Arantes AL; Moreira JPC; Diender M; Parshina SN; Stams AJM; Alves MM; Alves JI; Sousa DZ Front Microbiol; 2020; 11():58. PubMed ID: 32082285 [TBL] [Abstract][Full Text] [Related]
2. Propionate Production from Carbon Monoxide by Synthetic Cocultures of Acetobacterium wieringae and Propionigenic Bacteria. Moreira JPC; Diender M; Arantes AL; Boeren S; Stams AJM; Alves MM; Alves JI; Sousa DZ Appl Environ Microbiol; 2021 Jun; 87(14):e0283920. PubMed ID: 33990298 [TBL] [Abstract][Full Text] [Related]
3. Developing a genetic engineering method for Acetobacterium wieringae to expand one-carbon valorization pathways. Moreira JPC; Heap JT; Alves JI; Domingues L Biotechnol Biofuels Bioprod; 2023 Feb; 16(1):24. PubMed ID: 36788587 [TBL] [Abstract][Full Text] [Related]
4. Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. Groher A; Weuster-Botz D J Biotechnol; 2016 Jun; 228():82-94. PubMed ID: 27107467 [TBL] [Abstract][Full Text] [Related]
5. Defining Genomic and Predicted Metabolic Features of the Ross DE; Marshall CW; Gulliver D; May HD; Norman RS mSystems; 2020 Sep; 5(5):. PubMed ID: 32934112 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic Biohydrogenation of Isoprene by Acetobacterium wieringae Strain Y. Jin H; Li X; Wang H; Cápiro NL; Li X; Löffler FE; Yan J; Yang Y mBio; 2022 Dec; 13(6):e0208622. PubMed ID: 36342171 [TBL] [Abstract][Full Text] [Related]
7. General medium for the autotrophic cultivation of acetogens. Groher A; Weuster-Botz D Bioprocess Biosyst Eng; 2016 Oct; 39(10):1645-50. PubMed ID: 27270418 [TBL] [Abstract][Full Text] [Related]
9. Evolution of microbial communities growing with carbon monoxide, hydrogen, and carbon dioxide. Esquivel-Elizondo S; Delgado AG; Krajmalnik-Brown R FEMS Microbiol Ecol; 2017 Jun; 93(6):. PubMed ID: 28575426 [TBL] [Abstract][Full Text] [Related]
10. The effects of CO Esquivel-Elizondo S; Delgado AG; Rittmann BE; Krajmalnik-Brown R Biotechnol Biofuels; 2017; 10():220. PubMed ID: 28936234 [TBL] [Abstract][Full Text] [Related]
11. A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction. Neuendorf CS; Vignolle GA; Derntl C; Tomin T; Novak K; Mach RL; Birner-Grünberger R; Pflügl S Metab Eng; 2021 Nov; 68():68-85. PubMed ID: 34537366 [TBL] [Abstract][Full Text] [Related]
12. Effect of Sulfate on Carbon Monoxide Conversion by a Thermophilic Syngas-Fermenting Culture Dominated by a Alves JI; Visser M; Arantes AL; Nijsse B; Plugge CM; Alves MM; Stams AJM; Sousa DZ Front Microbiol; 2020; 11():588468. PubMed ID: 33304333 [TBL] [Abstract][Full Text] [Related]
13. Domestication of the novel alcohologenic acetogen Lee J; Lee JW; Chae CG; Kwon SJ; Kim YJ; Lee JH; Lee HS Biotechnol Biofuels; 2019; 12():228. PubMed ID: 31572495 [TBL] [Abstract][Full Text] [Related]
15. Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Sokolova TG; González JM; Kostrikina NA; Chernyh NA; Slepova TV; Bonch-Osmolovskaya EA; Robb FT Int J Syst Evol Microbiol; 2004 Nov; 54(Pt 6):2353-2359. PubMed ID: 15545483 [TBL] [Abstract][Full Text] [Related]
16. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP mBio; 2016 May; 7(3):. PubMed ID: 27222467 [TBL] [Abstract][Full Text] [Related]
17. Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia. Parera Olm I; Sousa DZ Adv Biochem Eng Biotechnol; 2022; 180():373-407. PubMed ID: 34811579 [TBL] [Abstract][Full Text] [Related]
18. Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Küsel K; Dorsch T; Acker G; Stackebrandt E; Drake HL Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():537-546. PubMed ID: 10758858 [TBL] [Abstract][Full Text] [Related]
19. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system. Xu H; Liang C; Yuan Z; Xu J; Hua Q; Guo Y Enzyme Microb Technol; 2017 Jun; 101():24-29. PubMed ID: 28433187 [TBL] [Abstract][Full Text] [Related]
20. Evidence for a Putative Isoprene Reductase in Acetobacterium wieringae. Kronen M; Vázquez-Campos X; Wilkins MR; Lee M; Manefield MJ mSystems; 2023 Apr; 8(2):e0011923. PubMed ID: 36943133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]