These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32082285)

  • 1. Enrichment of Anaerobic Syngas-Converting Communities and Isolation of a Novel Carboxydotrophic
    Arantes AL; Moreira JPC; Diender M; Parshina SN; Stams AJM; Alves MM; Alves JI; Sousa DZ
    Front Microbiol; 2020; 11():58. PubMed ID: 32082285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propionate Production from Carbon Monoxide by Synthetic Cocultures of Acetobacterium wieringae and Propionigenic Bacteria.
    Moreira JPC; Diender M; Arantes AL; Boeren S; Stams AJM; Alves MM; Alves JI; Sousa DZ
    Appl Environ Microbiol; 2021 Jun; 87(14):e0283920. PubMed ID: 33990298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a genetic engineering method for Acetobacterium wieringae to expand one-carbon valorization pathways.
    Moreira JPC; Heap JT; Alves JI; Domingues L
    Biotechnol Biofuels Bioprod; 2023 Feb; 16(1):24. PubMed ID: 36788587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation.
    Groher A; Weuster-Botz D
    J Biotechnol; 2016 Jun; 228():82-94. PubMed ID: 27107467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining Genomic and Predicted Metabolic Features of the
    Ross DE; Marshall CW; Gulliver D; May HD; Norman RS
    mSystems; 2020 Sep; 5(5):. PubMed ID: 32934112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic Biohydrogenation of Isoprene by Acetobacterium wieringae Strain Y.
    Jin H; Li X; Wang H; Cápiro NL; Li X; Löffler FE; Yan J; Yang Y
    mBio; 2022 Dec; 13(6):e0208622. PubMed ID: 36342171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General medium for the autotrophic cultivation of acetogens.
    Groher A; Weuster-Botz D
    Bioprocess Biosyst Eng; 2016 Oct; 39(10):1645-50. PubMed ID: 27270418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge.
    Alves JI; Stams AJ; Plugge CM; Alves MM; Sousa DZ
    FEMS Microbiol Ecol; 2013 Dec; 86(3):590-7. PubMed ID: 23899025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of microbial communities growing with carbon monoxide, hydrogen, and carbon dioxide.
    Esquivel-Elizondo S; Delgado AG; Krajmalnik-Brown R
    FEMS Microbiol Ecol; 2017 Jun; 93(6):. PubMed ID: 28575426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of CO
    Esquivel-Elizondo S; Delgado AG; Rittmann BE; Krajmalnik-Brown R
    Biotechnol Biofuels; 2017; 10():220. PubMed ID: 28936234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction.
    Neuendorf CS; Vignolle GA; Derntl C; Tomin T; Novak K; Mach RL; Birner-Grünberger R; Pflügl S
    Metab Eng; 2021 Nov; 68():68-85. PubMed ID: 34537366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Sulfate on Carbon Monoxide Conversion by a Thermophilic Syngas-Fermenting Culture Dominated by a
    Alves JI; Visser M; Arantes AL; Nijsse B; Plugge CM; Alves MM; Stams AJM; Sousa DZ
    Front Microbiol; 2020; 11():588468. PubMed ID: 33304333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domestication of the novel alcohologenic acetogen
    Lee J; Lee JW; Chae CG; Kwon SJ; Kim YJ; Lee JH; Lee HS
    Biotechnol Biofuels; 2019; 12():228. PubMed ID: 31572495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment of syngas-converting communities from a multi-orifice baffled bioreactor.
    Arantes AL; Alves JI; Stams AJM; Alves MM; Sousa DZ
    Microb Biotechnol; 2018 Jul; 11(4):639-646. PubMed ID: 29160026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park.
    Sokolova TG; González JM; Kostrikina NA; Chernyh NA; Slepova TV; Bonch-Osmolovskaya EA; Robb FT
    Int J Syst Evol Microbiol; 2004 Nov; 54(Pt 6):2353-2359. PubMed ID: 15545483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.
    Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP
    mBio; 2016 May; 7(3):. PubMed ID: 27222467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia.
    Parera Olm I; Sousa DZ
    Adv Biochem Eng Biotechnol; 2022; 180():373-407. PubMed ID: 34811579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments.
    Küsel K; Dorsch T; Acker G; Stackebrandt E; Drake HL
    Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():537-546. PubMed ID: 10758858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system.
    Xu H; Liang C; Yuan Z; Xu J; Hua Q; Guo Y
    Enzyme Microb Technol; 2017 Jun; 101():24-29. PubMed ID: 28433187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a Putative Isoprene Reductase in Acetobacterium wieringae.
    Kronen M; Vázquez-Campos X; Wilkins MR; Lee M; Manefield MJ
    mSystems; 2023 Apr; 8(2):e0011923. PubMed ID: 36943133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.