These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 32083053)

  • 1. Operando X-Ray Spectroscopic Techniques: A Focus on Hydrogen and Oxygen Evolution Reactions.
    V VM; Nageswaran G
    Front Chem; 2020; 8():23. PubMed ID: 32083053
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Xiao Z; Huang YC; Dong CL; Xie C; Liu Z; Du S; Chen W; Yan D; Tao L; Shu Z; Zhang G; Duan H; Wang Y; Zou Y; Chen R; Wang S
    J Am Chem Soc; 2020 Jul; 142(28):12087-12095. PubMed ID: 32538073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What X-Ray Absorption Spectroscopy Can Tell Us About the Active State of Earth-Abundant Electrocatalysts for the Oxygen Evolution Reaction.
    Risch M; Morales DM; Villalobos J; Antipin D
    Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202211949. PubMed ID: 36129132
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Erbe A; Tesch MF; Rüdiger O; Kaiser B; DeBeer S; Rabe M
    Phys Chem Chem Phys; 2023 Oct; 25(40):26958-26971. PubMed ID: 37585177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Water Electrolysis by Co-Cu-W Mixed Metal Oxides: Insights from X-ray Absorption Spectroelectrochemistry.
    Gupta N; Segre C; Nickel C; Streb C; Gao D; Glusac KD
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35793-35804. PubMed ID: 38949083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction.
    Su X; Wang Y; Zhou J; Gu S; Li J; Zhang S
    J Am Chem Soc; 2018 Sep; 140(36):11286-11292. PubMed ID: 30111100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research.
    Liu D; Shadike Z; Lin R; Qian K; Li H; Li K; Wang S; Yu Q; Liu M; Ganapathy S; Qin X; Yang QH; Wagemaker M; Kang F; Yang XQ; Li B
    Adv Mater; 2019 Jul; 31(28):e1806620. PubMed ID: 31099081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Understanding the Formation Mechanism and OER Catalytic Mechanism of Hydroxides by In Situ and Operando Techniques.
    Chen Z; Fan Q; Zhou J; Wang X; Huang M; Jiang H; Cölfen H
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202309293. PubMed ID: 37650657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances.
    Wang J; Gao Y; Kong H; Kim J; Choi S; Ciucci F; Hao Y; Yang S; Shao Z; Lim J
    Chem Soc Rev; 2020 Dec; 49(24):9154-9196. PubMed ID: 33140778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Synthesis and Operando Electrochemical Impedance Spectroscopic Characterization of Heterostructured MoP-Mo
    Attarzadeh N; Lakshmi-Narayana A; Das D; Tan S; Shutthanandan V; Ramana CV
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):6958-6970. PubMed ID: 38306454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing nickel oxide electrocatalysts incorporating diamines and having improved oxygen evolution activity using
    Miura T; Tsunekawa S; Onishi S; Ina T; Wang K; Watanabe G; Hu C; Kondoh H; Kawai T; Yoshida M
    Phys Chem Chem Phys; 2021 Oct; 23(40):23280-23287. PubMed ID: 34633002
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Timoshenko J; Roldan Cuenya B
    Chem Rev; 2021 Jan; 121(2):882-961. PubMed ID: 32986414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst.
    Kornienko N; Resasco J; Becknell N; Jiang CM; Liu YS; Nie K; Sun X; Guo J; Leone SR; Yang P
    J Am Chem Soc; 2015 Jun; 137(23):7448-55. PubMed ID: 26051104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives.
    Suen NT; Hung SF; Quan Q; Zhang N; Xu YJ; Chen HM
    Chem Soc Rev; 2017 Jan; 46(2):337-365. PubMed ID: 28083578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts.
    Zhao S; Yang Y; Tang Z
    Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202110186. PubMed ID: 34490688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operando X-ray Absorption Spectroscopy as a Powerful Tool for Uncovering Property-Activity Relationships for Oxygen Evolution Transition Metal Oxide Catalysts.
    Fabbri E; Schmidt TJ
    Chimia (Aarau); 2024 May; 78(5):320-325. PubMed ID: 38822775
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Lassalle-Kaiser B; Gul S; Kern J; Yachandra VK; Yano J
    J Electron Spectros Relat Phenomena; 2017 Nov; 221():18-27. PubMed ID: 29515287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical flow cell enabling operando probing of electrocatalyst surfaces by X-ray spectroscopy and diffraction.
    Farmand M; Landers AT; Lin JC; Feaster JT; Beeman JW; Ye Y; Clark EL; Higgins D; Yano J; Davis RC; Mehta A; Jaramillo TF; Hahn C; Drisdell WS
    Phys Chem Chem Phys; 2019 Mar; 21(10):5402-5408. PubMed ID: 30785434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.
    Stoerzinger KA; Hong WT; Crumlin EJ; Bluhm H; Shao-Horn Y
    Acc Chem Res; 2015 Nov; 48(11):2976-83. PubMed ID: 26305627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.